Альдегиды и кетоны

Альдегиды и кетоны

Альдегиды и кетоны

Альдегиды и кетоны – производные углеводородов, в которых содержится одна или более карбонильных групп $C = O$ (оксогрупп). Альдегидами называются соединения, в которых карбонильная группа соединена с углеводородным остатком и водородом, кетонами – если она соединена с двумя углеводородными остатками (при этом группу $C = O$ называют еще кетогруппой):

Рисунок 1. Альдегилы и кетоны. Автор24 — интернет-биржа студенческих работ

Альдегиды и кетоны относятся к группе карбонильных соединений.

В зависимости от строения углеводородного радикала альдегиды и кетоны разделяют на алифатические, алициклические и ароматические. Среди алифатических альдегидов и кетонов различают насыщенные и ненасыщенные.

Изомерия альдегидов связана со строением углеводородного остатка, а кетонов – дополнительно положению $C = O$ группы.

Физические свойства

Определение 1

Насыщенные альдегиды и кетоны – это бесцветные жидкости, кроме формальдегида, который при нормальных условиях является газом. Они характеризуются резким запахом. Температуры их кипения ниже, чем у спиртов, так как для альдегидов и кетонов проявления водородной связи не характерно, причем кетоны кипят при более высокой температуре, чем альдегиды с одинаковым количеством атомов углерода.

Ничего непонятно?

Попробуй обратиться за помощью к преподавателям

Муравьиный и уксусный альдегиды, а также кетоны с небольшой молекулярной массой растворимые в воде. При увеличении молекулярной массы растворимость этих веществ в воде уменьшается. Все альдегиды и кетоны хорошо растворяются в органических растворителях (спирте, эфире и т.п.).

Считают, что карбонильная группа -осмофор, то есть носитель запаха. Муравьиный альдегид имеет довольно резкий запах. Другие ниже альдегиды имеют удушающий запах, который при сильном разбавления становится приятным и напоминает запах овощей и фруктов. Кетоны пахнут довольно приятно.

Электронное строение карбонильной группы

Вследствие различной электроотрицательности атомов углерода и кислорода карбонильная группа имеет высокую полярность (μ $\sim$ $2,5 D$ для альдегидов и $2,7 D$ для кетонов) и значительную способность к поляризуемости. Например, значение молекулярной рефракции $MR$ для оксогруппы равна примерно 3,4, тогда как для одинарной $C-O$-связи всего 1,5.

Двойная связь карбонильной группы состоит, как и для алкенов, из σ- и π-связей:

Рисунок 2. Двойная связь карбонильной группы. Автор24 — интернет-биржа студенческих работ

Особенность карбонильной группы заключается в заметной разнице электроотрицательности атомов, ее образующих. Атом кислорода имеет внешнее строение $1s22s22p4$ с распредилением 4х $p$-электронов по отдельным $x,y,z$ подуровням, но окончательно проблема его гибридизации не решена.

Предполагают существование неэквивалентных гибридных орбиталей со значительным $p$-характером типа $sn pm$, где $n$ стремиться к 1, $m$ стремиться к 2, то есть, σ-связь $C-O$ вероятнее всего образуется при перекрытии $sp{2_-}$-гибридной орбитали углерода и $2p_x – AO$ кислорода. $n$-связь образуется при взаимодействии негибридизованои $2p_x – AO$ углерода и $2p_x – AO$ кислорода.

Две остаточные пары $n$-элетронов $2s2$ и ${2p2}_y$ атома кислорода существенно на химические свойства карбонильной группы не влияют.

Ниже приведена структура простейшего альдегида – формальдегида с данными валентных углов и длин связей.

Рисунок 3. Структура простейшего альдегида. Автор24 — интернет-биржа студенческих работ

длина связи,$C=O$ 1,203$C-H$ 1,101

валентный угол, ${}\circ$$H-C=O$ 121,8$H-C-H$ 116,5

Вследствие полярности связей $C = O$ атом углерода приобретает положительный эффективного заряда, и его называют электрофильным центром, а кислород – отрицательного заряда, и его называют нуклеофильного центром.

Поэтому атом углерода взаимодействует с нуклеофилами, что является основным взаимодействием $C=O$-группы альдегидов и кетонов в химических реакциях, а кислород – с электрофилами.

Заместители акцепторного действия, которые увеличивают положительный заряд на атоме углерода карбонильной группы, значительно повышают ее реакционную способность. Противоположный эффект наблюдается при донорном действии заместителей:

Рисунок 4. Донорное действие заместителей. Автор24 — интернет-биржа студенческих работ

Итак, альдегиды и кетоны, с одной стороны, проявляют значительные электрофильные свойства, а с другой – слабые нуклеофильные, подобно спиртам и эфирам.

Альдегиды проявляют большую химическую активность по сравнению с кетонами в результате двух основных факторов. Во-первых, при наличии второго углеводородного остатка $R$ возникают стерические препятствия при атаке нуклеофилом электрофильного центра.

Во-вторых, заместитель $R$ с $+I$-эффектом уменьшает положительный заряд на электрофильном атоме углерода карбонильной группы и увеличивает отрицательный заряд на атоме кислорода.

В результате ослабляется способность карбонильной группы к реакциям с нуклеофильными реагентами.

Энергия связи $C = O$ равна 680-760 кДж / моль (для сравнения энергия двойной связи $E_{C=C}$ составляет 590-640 кДж / моль), но благодаря высокой полярности и поляризуемости карбонильная группа более реакционноспособна, чем углерод-углеродная кратная связь.

Спектральные характеристики альдегидов и кетонов

В УФ-спектрах карбонильные соединения имеют интенсивную полосу поглощения -185 нм вследствие π-π-перехода и слабоинтенсивну 270-300 нм благодаря n-π-перехода:

Рисунок 5. УФ-спектры: бензальдегида (I), анилина (II) и фторбензола (III). Автор24 — интернет-биржа студенческих работ

В ИК-области спектра наблюдаются интенсивные валентные колебания карбонильной группы $v_{C=O}$ в диапазоне 1850-1650 см ${-1}$, поэтому ИК-спектроскопия является надежным методом ее определения.

В случае ПМР-спектроскопии для альдегидной группы существует характерный сигнал протона при 8,5-11,0 м.ч., который также является надежным критерием его наличии у карбонильной группы.

Источник: https://spravochnick.ru/himiya/aldegidy_i_ketony/

Альдегиды и кетоны: формула и химические свойства, получение, применение

Альдегиды и кетоны

Альдегиды и кетоны имеют в своем составе карбонильную функциональную группу >С=О и относятся к классу карбонильных соединений. Также их называют оксосоединениями. Несмотря на то что эти вещества относятся к одному классу, из-за особенностей строения их все же разделяют на две большие группы.

В кетонах атом углерода из группы >С=О соединен с двумя одинаковыми или различными углеводородными радикалами, обычно они имеют вид: R-СО-R'. Такую форму карбонильной группы называют еще кетогруппой или оксогруппой.

В альдегидах же карбонильный углерод соединен только с одним углеводородным радикалом, а оставшаяся валентность занимается атомом водорода: R-СОН. Такую группу принято называть альдегидной.

Благодаря этим различиям в строении альдегиды и кетоны ведут себя немного по-разному при взаимодействии с одними и теми же веществами.

Карбонильная группа

Атомы С и О в этой группе находятся в sp2-гибридизированном состоянии. Углерод за счет sp2-гибридных орбиталей имеет 3 σ-связи, расположенные под углом примерно в 120 градусов в одной плоскости.

Атом кислорода обладает гораздо большей электроотрицательностью, чем углеродный атом, а поэтому стягивает на себя подвижные электроны π-связи в группе >С=О. Поэтому на атоме О возникает избыточная электронная плотность δ-, а на атоме С, напротив, происходит ее уменьшение δ+. Этим и объясняются особенности свойств альдегидов и кетонов.

Двойная связь С=О более прочная, чем С=С, но вместе с тем и более реакционно способная, что объясняется большой разницей в электроотрицательностях атомов углерода и кислорода.

Как и для всех других классов органических соединений, существуют различные подходы к наименованию альдегидов и кетонов. В соответствии с положениями номенклатуры ИЮПАК, наличие альдегидной формы карбонильной группы обозначается суффиксом -аль, а кетонной -он.

Если карбонильная группа является старшей, то она определяет порядок нумерации атомов С в основной цепи. В альдегидной карбонильный атом углерода является первым, а в кетонах атомы С нумеруют с того края цепи, к которому ближе группа >С=О. С этим связана необходимость обозначать положение карбонильной группы в кетонах.

Делают это, записывая соответствующую цифру после суффикса -он.

Гомологический ряд альдегидов и кетонов

Н-СОНметанальСН3-СО-СΗ3пропанон
СН3-СОНэтанальСН3-СО-СΗ2-СΗ3бутанон
СН3-СΗ2-СОΗпропанальСН3-СО-СΗ2-СН2-СΗ3пентанон-2
СΗ3-СΗ2-СΗ2-СОΗбутанальСН3-СΗ2-СО-СΗ2-СН3пентанон-3
СΗ3-(СΗ2)3-СОΗпентанальСН3-СО-СΗ2-СН2-СΗ2-СН3гексанон-2
СΗ3-(СΗ2)4-СОНгексанальСΗ3-СΗ2-СО-СН2-СΗ2-СН3гексанон-3

Если карбонильная группа не является старшей, то по правилам ИЮПАК ее наличие указывают приставкой -оксо для альдегидов и -оксо (-кето) для кетонов.

Для альдегидов широко применяют тривиальные названия, получаемые от наименования кислот, в которые они способны превращаться при окислении с заменой слова “кислота” на “альдегид”:

  • СΗ3-СОН уксусный альдегид;
  • СΗ3-СН2-СОН пропионовый альдегид;
  • СΗ3-СН2-СН2-СОН масляный альдегид.

Для кетонов распространены радикально функциональные названия, которые складываются из наименований левого и правого радикалов, соединенных с карбонильным атомом углерода, и слова “кетон”:

  • СΗ3-СО-СН3 диметилкетон;
  • СΗ3-СΗ2-СО-СН2-СН2-СН3 этилпропилкетон;
  • С6Η5-СО-СΗ2-СΗ2-СΗ3 пропилфенилкетон.

Классификация

В зависимости от характера углеводородных радикалов класс альдегидов и кетонов делят на:

  • предельные – атомы С связаны друг с другом только одинарными связями (пропаналь, пентанон);
  • непредельные – между атомами С имеются двойные и тройные связи (пропеналь, пентен-1-он-3);
  • ароматические – содержат в своей молекуле бензольное кольцо (бензальдегид, ацетофенон).

По числу карбонильных и наличию других функциональных групп различают:

  • монокарбонильные соединения – содержат только одну карбонильную группу (гексаналь, пропанон);
  • дикарбонильные соединения – содержат две карбонильные группы в альдегидной и/или кетонной форме (глиоксаль, диацетил);
  • карбонильные соединения, содержащие также другие функциональные группы, которые, в свою очередь, делятся на галогенкарбонильные, гидроксикарбонильные, аминокарбонильные и т.д.

Изомерия

Наиболее характерной для альдегидов и кетонов является структурная изомерия. Пространственная возможна тогда, когда в углеводородном радикале присутствует асимметрический атом, а также двойная связь с различными заместителями.

  • Изомерия углеродного скелета. Наблюдается у обоих типов рассматриваемых карбонильных соединений, но начинается с бутаналя в альдегидах и с пентанона-2 в кетонах. Так, бутаналь СН3-СΗ2-СΗ2-СОН имеет один изомер 2-метилпропаналь СΗ3-СΗ(СΗ3)-СОН. А пентанон-2 СΗ3-СО-СΗ2-СΗ2-СΗ3 изомерен 3-метилбутанону-2 СΗ3-СО-СΗ(СΗ3)-СΗ3.
  • Межклассовая изомерия. Оксосоединения с одинаковым составом изомерны между собой. Например, составу С3Η6О соответствуют пропаналь СН3-СΗ2-СОН и пропанон СΗ3-СО-СΗ3. А молекулярная формула альдегидов и кетонов С4Н8О подходит бутаналю СН3-СΗ2-СΗ2-СОН и бутанону СН3-СО-СΗ2-СΗ3.

Также межклассовыми изомерами для карбоксильных соединений являются циклические оксиды. Например, этаналь и этиленоксид, пропанон и пропиленоксид. Кроме того, непредельные спирты и простые эфиры также могут иметь общий состав и оксосоединениями. Так, молекулярную формулу С3Н6О имеют:

  • СΗ3-СΗ2-СОН – пропаналь;
  • СΗ2=СΗ-СΗ2-ОН – аллиловый спирт;
  • СΗ2=СΗ-О-СН3 – метилвиниловый эфир.

Физические свойства

Несмотря на то что молекулы карбонильных веществ полярны, в отличие от спиртов, альдегиды и кетоны не имеют подвижного водорода, а значит, не образуют ассоциатов. Следовательно, температуры плавления и кипения их несколько ниже, чем у соответствующих им спиртов.

Если сравнивать альдегиды и того же состава кетоны, то у последних tкип несколько выше. С увеличением молекулярной массы tпл и tкип оксосоединений закономерно повышаются.

Низшие карбонильные соединения (ацетон, формальдегид, уксусный альдегид) хорошо растворимы в воде, высшие же альдегиды и кетоны растворяются в органических веществах (спиртах, эфирах и т.д.).

Пахнут оксосоединения весьма различно. Низшие их представители имеют резкие запахи. Альдегиды, содержащие от трех до шести атомов С, пахнут очень неприятно, а вот высшие их гомологи наделены цветочными ароматами и даже применяются в парфюмерии.

Реакции присоединения

Химические свойства альдегидов и кетонов обусловлены особенностями строения карбонильной группы. Из-за того, что двойная связь С=О сильно поляризована, то под действием полярных агентов она легко переходит в простую одинарную связь.

1. Взаимодействие с синильной кислотой. Присоединение HCN в присутствии следов щелочей происходит с образованием циангидринов. Щелочь добавляют для повышения концентрации ионов CN-:

R-СОН + NCN ―> R-СН(ОН)-CN

2. Присоединение водорода. Карбонильные соединения легко могут восстанавливаться до спиртов, присоединяя водород по двойной связи. При этом из альдегидов получают первичные спирты, а из кетонов – вторичные. Реакции катализируются никелем:

Н3С-СОН + Н2 ―> Н3С-СΗ2-ОΗ

Η3С-СО-СΗ3 + Η2 ―> Н3С-СΗ(ОΗ)-СΗ3

3. Присоединение гидроксиламинов. Эти реакции альдегидов и кетонов катализируются кислотами:

Н3С-СОН + NH2OH ―> Η3С-СΗ=N-ОН + Н2О

4. Гидратация. Присоединение молекул воды к оксосоединениям приводит к образованию гем-диолов, т.е.

таких двухатомных спиртов, в которых две гидроксильные группы присоединены к одному атому углерода.

Однако такие реакции обратимы, полученные вещества тут же распадаются с образованием исходных веществ. Электроноакцепторные группы в данном случае смещают равновесие реакций в сторону продуктов:

>С=О + Η2 >С(ОΗ)2

5. Присоединение спиртов. В ходе этой реакции могут получаться различные продукты. Если к альдегиду присоединяется две молекулы спирта, то образуется ацеталь, а если только одна, то полуацеталь. Условием проведения реакции является нагревание смеси с кислотой или водоотнимающим агентом.

R-СОН + НО-R' ―> R-СН(НО)-О-R'

R-СОН + 2НО-R' ―> R-СН(О-R')2

Альдегиды с длинной углеводородной цепью склонны к внутримолекулярной конденсации, в результате которой образуются циклические ацетали.

Качественные реакции

Понятно, что при отличающейся карбонильной группе в альдегидах и кетонах химия их тоже различна. Порой необходимо понять, к какому из этих двух типов относится полученное оксосоединение.

Альдегиды окисляются легче, чем кетоны, происходит это даже под действием оксида серебра или гидроксида меди (II).

При этом карбонильная группа изменяется в карбоксильную и образуется карбоновая кислота.

Реакцией серебряного зеркала принято называть окисление альдегидов раствором оксида серебра в присутствии аммиака. Фактически в растворе образуется комплексное соединение, которое и воздействует на альдегидную группу:

Ag2O + 4NH3 + Н2О ―> 2[Ag(NΗ3)2]ОΗ

СΗ3-СОΗ + 2[Ag(NΗ3)2]ОΗ ―> СН3-СОО-NH4 + 2Ag + 3NH3 +Н2О

Чаще записывают суть происходящей реакции более простой схемой:

СΗ3-СОΗ + Ag2O ―> СΗ3-СООΗ + 2Ag

В ходе реакции окислитель восстанавливается до металлического серебра и выпадает в осадок. При этом на стенках реакционного сосуда образуется тонкий серебряный налет, похожий на зеркало. Именно за это реакция и получила свое название.

Еще одной качественной реакцией, указывающей на разницу в строении альдегидов и кетонов, является действие на группу -СОН свежим Cu(OΗ)2. Готовят его добавлением щелочей к растворам солей меди двухвалентной. При этом образуется голубая суспензия, которая при нагревании с альдегидами меняет окраску на красно-коричневую за счет образования оксида меди (I):

R-СОН + Cu(OΗ)2 ―> R-СООΗ + Cu2O + Η2О

Реакции окисления

Оксосоединения можно окислить раствором KMnO4 при нагревании в кислой среде. Однако кетоны при этом разрушаются с образованием смеси продуктов, которые не имеют практической ценности.

Химическая реакция, отражающая данное свойство альдегидов и кетонов, сопровождается обесцвечиванием розоватой реакционной смеси. При этом из подавляющего большинства альдегидов получаются карбоновые кислоты:

СН3-СОН + KMnO4 + H2SO4 ―> СН3-СОН + MnSO4 + K2SO4 + Н2О

Формальдегид в ходе данной реакции окисляется до муравьиной кислоты, которая под действием окислителей распадается с образованием углекислого газа:

Н-СОН + KMnO4 + H2SO4 ―> СО2 + MnSO4 + K2SO4 + Н2О

Для альдегидов и кетонов характерно полное окисление в ходе реакций горения. При этом образуются СО2 и вода. Уравнение горения формальдегида имеет вид:

НСОН + O2 ―> СО2 + Н2О

Получение

В зависимости от объемов продуктов и целей их использования способы получения альдегидов и кетонов делят на промышленные и лабораторные. В химическом производстве карбонильные соединения получают окислением алканов и алкенов (нефтепродуктов), дегидрированием первичных спиртов и гидролизом дигалогеналканов.

1. Получение формальдегида из метана (при нагревании до 500 °С в присутствии катализатора):

СΗ4 + О2 ―> НСОН + Η2О.

2. Окисление алкенов (в присутствии катализатора и высокой температуре):

2СΗ2=СΗ2 + О2 ―> 2СН3-СОН

2R-СΗ=СΗ2 + О2 ―> 2R-СΗ2-СОΗ

3. Отщепление водорода от первичных спиртов (катализируется медью, необходимо нагревание):

СΗ3-СΗ2-ОН ―> СН3-СОН + Η2

R-СН2-ОН ―> R-СОН + Н2

4. Гидролиз дигалогеналканов щелочами. Обязательным условием является присоединенность обоих атомов галогенов к одному и тому же атому углерода:

СΗ3-C(Cl)2H + 2NaOH ―> СΗ3-СОΗ + 2NaCl + Н2О

В небольших количествах в лабораторных условиях карбонильные соединения получают гидратацией алкинов или окислением первичных спиртов.

5. Присоединение воды к ацетиленам происходит в присутствии сульфида ртути в кислой среде (реакция Кучерова):

ΗС≡СΗ + Η2О ―> СН3-СОΗ

R-С≡СΗ + Η2О ―> R-СО-СН3

6. Окисление спиртов с концевой гидроксильной группой проводят с использованием металлических меди или серебра, оксида меди (II), а также перманганатом или дихроматом калия в кислой среде:

R-СΗ2-ОΗ + О2 ―> R-СОН + Н2О

Применение альдегидов и кетонов

Муравьиный альдегид необходим для получения фенолформальдегидных смол, получаемых в ходе реакции его конденсации с фенолом.

В свою очередь образующиеся полимеры необходимы для производства разнообразных пластмасс, древесно-стружечных плит, клея, лаков и многого другого.

Также он применяется для получения лекарственных средств (уротропина), дезинфицирующих средств и используется для хранения биологических препаратов.

Основная часть этаналя идет на синтез уксусной кислоты и других органических соединений. Некоторые количества ацетальдегида используют в фармацевтическом производстве.

Ацетон широко применяется для растворения многих органических соединений, в числе которых лаки и краски, некоторых видов каучуков, пластмасс, природных смол и масел.

Для этих целей он используется не только чистым, но и в смеси с другими органическими соединениями в составе растворителей марок Р-648, Р-647, Р-5, Р-4 и др.

Также его используют для обезжиривания поверхностей при изготовлении различных деталей и механизмов. Большие количества ацетона требуются для фармацевтического и органического синтеза.

Многие альдегиды обладают приятными ароматами, благодаря чему применяются в парфюмерной промышленности. Так, цитраль имеет лимонный запах, бензальдегид пахнет горьким миндалем, фенилуксусный альдегид привносит в композицию аромат гиацинта.

Циклогексанон нужен для производства многих синтетических волокон. Из него получают адипиновую кислоту, в свою очередь применяемую как сырье для капролактама, нейлона и капрона. Также он используется в качестве растворителя жиров, природных смол, воска и ПВХ.

Источник: http://fb.ru/article/84889/aldegidyi-i-ketonyi-svoystva-i-sintez-karbonilnyih-soedineniy

Карбонильная группа. Альдегиды и кетоны

Альдегиды и кетоны

Слово альдегид было придумано как сокращение латинского alcohol dehydrogenatus — дегидрированный спирт, самый популярный альдегид – формальдегид, из него делают смолы, синтезируют лекарства и как консервант. Формула альдегида – R-CHO, соединение, в котором карбонильная группа соединена с водородом и радикалом.

Слово кетон произошло от слова ацетон, младшего соединения из семейства кетонов. Кетоны используются как растворители, лекарства и для синтеза полимеров. Формула кетона – R-C(O)-R, соединение, в котором карбонильная группа соединена с двумя радикалами.

Структура и свойства карбонильной группы

Карбонильная группа основана на связи атома углерода и атома кислорода посредством α- и π-связей.

Резонансная структура группы определяет высокую полярность соединения и электронное облако сдвинуто в сторону кислорода: Cδ+=Oδ-.

Введение электроотрицательных элементов в уменьшает полярность связи, повышая положительный заряд молекулы. Нуклеофильные заместители увеличивают отрицательный заряд кислорода.

Атом углерода в карбонильной группе является сильным электрофилом (присоединяет электроны), поэтому большинство реакций альдегидов и кетонов осуществляется нуклеофильными реактивами (основания Льюиса). Логично, атом кислорода является сильным нуклеофилом, и реакции с атомом кислорода возможны с применением электрофилов (кислот Льюиса).

Реакция карбонильной группы с основанием Льюиса
(R)(R)Cδ+=Oδ- + B: → (R)(R)C(B)-O
Реакция карбонильной группы с кислотой Льюиса
(R)(R)Cδ+=Oδ- + Y: → (R)(R)C-O-Y

В дополнение, неразделённые электроны кислорода наделяют его слабыми свойствами основания, поэтому те альдегиды и цетоны, которые не растворяются в воде, растворяются в концентрированной серной кислоте.

Физические свойства карбонильной группы

Высокая полярность связи C=O образует высокий дипольный момент, из-за чего носители карбоксильной группы имеют более высокую температуру кипения, по сравнению с углеводородами.

Неразделённые электроны в атоме кислорода образуют водородную связь с молекулами воды, поэтому, начиная с пяти атомов углерода в радикалах, альдегиды и кетоны плохо растворяются в воде или не растворяются вовсе.

Альдегиды и кетоны, имеющие до 12 атомов углерода – жидкости. Алифатические соединения с карбонильной группой имеют плотность примерно 0.8, поэтому плавают на поверхности воды, циклогексанон имеет плотность около единицы, ароматические альдегиды и кетоны имеют плотность чуть больше, чем плотность воды.

Присоединение воды

В процессе реакции воды с альдегидами и кетонами образуются диолы (гликоли, двухатомные спирты). Реакция протекает с использованием катализатора – кислотой или основанием и является двусторонней:

RR-CO + H-OH ↔ RR\C/OH-OH

Присоединение нуклеофильных углеродов

Важные нуклеофильные соединения, реагирующие с альдегидами и кетонами – металлорганические соеденинения (органические соединения, в молекулах которых существует связь атома металла с атомом/атомами углерода). Одни из представителей металлорганических соединений – реактивы Гриньяра (общая формула – R-Mg-X), в реакциях с альдегидами и кетонами образуют спирты:

RH-C=O + R-C-H2-Mg+-Cl- → RH-С-(O-MgCl)(CH2-R)
RH-С-(O-MgCl)(CH2-R) + H-OH → RH-C-CH2R + OH-Mg-Cl

Окисление альдегидов и кетонов

При окислении, альдегиды находятся на промежуточном этапе между спиртами и карбоновыми кислотами:

В присутствии водорода и кислорода:
R-CH2-OH ↔ R-C(=O)-H ↔ R-COOH

Альдегиды легко окисляются, что позволяет использовать более мягкие окислители, чем простой кислород. Ароматические альдегиды подвергаются окислению легче, чем алифатические. Проблема окисления альдегидов – в образовании побочных продуктов.

Кетоны окисляются с трудом, для окисления кетонов необходимо использовать сильные окислители и большое количество тепла. В результате окисления разрывается связь C-C и образовывается кислота (есть исключение):

В присутствии KMnO4, H и большого количества тепла:
CH3-C(=O)-CH2CH3 → CH3-C(=O)-OH + CH3CH2-C(=O)-OH

Исключением является окисление диоксидом селена, SeO2, метил-группа, следующая за карбонильной, окисляется, преобразовываясь в другую карбонильную группу. Например, метилэтилкетон окисляется в диацетил:

Окисление метилэтилкетона в диацетил:
CH3CH2-C(=O)-CH3 + SeO2 → CH3-C(=O)-C(=O)-CH3 + H2O + Se

Лёгкость, с которой окисляются альдегиды, позволяет легко отличить их от кетонов, для этого используются мягкие окислители, такие как: реактив Толленса (гидроксид диамминсеребра, Ag(NH3)2OH), реактив Фелинга (алкалиновый раствор ионов меди Cu в Сегнетовой соли KNaC4H6O6·4H2O) и раствор Бенедикта (ионы меди с цитратом и карбонатом натрия). Ароматические альдегиды реагируют с реактивом Толленса, но не реагируют с реактивами Бенедикта и Фелинга, что используется для определения количества алифатических и ароматных альдегидов.

Паральдегид

Ацетальдегид имеет температуру кипения 20°C, что затрудняет его хранение и применение. При обработке ацетальдегида кислотой при низкой температуре, ацетальдегид соединяется в цикличную тройную молекулу – паральдегид, с температурой кипения 120°C. Паральдегид при небольшом нагреве деполимеризуется, высвобождая три молекулы ацетальдегида.

Формальдегид

Для удобства транспортировки и хранения, формальдегид продаётся не в форме газа, а в виде формалина – водного раствора с содержанием 37-40% параформальдегида, OH(CH2O)nH, со средним значением n=30.

Параформальдегид – белое аморфное вещество, твёрдое, получаемое медленным выпариванием формалина при низком давлении.

Полимеризация происходит за счёт присоединения друг к другу молекул формальдегида:

CH2=O + H2O ↔ [HOCH2OH]
[HOCH2OH] + n[HCHO] → HO-(CH2O)n+1-H Полимер Дерлин (полиоксиметилен) является хорошим линейным пластиком с высокой молекулярной массой, дерлин обладает отличными характеристиками прочности и эластичности.

Нажмите на молекулу в списке и 3D-модель появится в чёрном окне

Источник: https://k-tree.ru/articles/himiya/organicheskaya_himiya/karbonilnaya_gruppa

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.

    ×
    Рекомендуем посмотреть