Алканы

Содержание

Тема №15 «Алканы» | CHEM-MIND.com

Алканы

Алканы — углеводороды, в молекулах которых атомы связаны одинарными связями и которые соответствуют общей формуле CnH2n+2. В молекулах алканов все атомы углерода находятся в состоянии sр3-гибридизации.

Это означает, что все четыре гибридные орбитали атома углерода одинаковы по форме, энергии и направлены в углы равносторон­ней треугольной пирамиды — тетраэдра. Углы между орбиталями равны 109° 28′.

Вокруг одинарной углерод-углеродной связи возможно практически свободное вращение, и молекулы алканов могут приобретать самую разнообразную форму с углами при атомах углерода, близкими к тетраэдрическому (109° 28′), напри­мер, в молекуле н-пентан.

Особо стоит напомнить о связях в молекулах ал­канов. Все связи в молекулах предельных углеводо­родов одинарные. Перекрывание происходит по оси, соединяющей ядра атомов, т. е. это σ-связи.

Связи углерод — углерод являются неполярными и плохо поляризуемыми. Длина С—С связи в алканах равна 0,154 нм (1,54 • 1010 м). Связи С—Н несколько коро­че.

Электронная плотность немного смещена в сто­рону более электроотрицательного атома углерода, т. е. связь С—Н является слабополярной.

Гомологический ряд метана

Гомологи — вещества, сходные по строению и свойствам и отличающиеся на одну или более групп СН2.

Предельные углеводороды составляют гомоло­гический ряд метана.

Изомерия и номенклатура алканов

Для алканов характерна так называемая струк­турная изомерия. Структурные изомеры отлича­ются друг от друга строением углеродного скеле­та. Простейший алкан, для которого характерны структурные изомеры, — это бутан.

Рассмотрим подробнее для алканов основы но­менклатуры ИЮПАК.

1.     Выбор главной цепи. Формирование названия углеводорода начинается с определения главной цепи — самой длинной цепочки атомов углерода в молекуле, которая является как бы ее основой.

2.     Нумерация атомов главной цепи. Атомам главной цепи присваивают номера. Нумерация атомов главной цепи начинается с того конца, к которому ближе стоит заместитель (структуры А, Б). Если заместители находятся на равном уда­лении от конца цепи, то нумерация начинается от того конца, при котором их больше (структу­ра В).

Если различные заместители находятся на равном удалении от концов цепи, то нумерация начинается с того конца, к которому ближе стар­ший (структура Г).

Старшинство углеводородных заместителей определяется по тому, в каком порядке следует в алфавите буква, с которой начи­нается их название: метил (—СН3), затем пропил (-СН2-СН2-СН3), этил (—СН2—СН3) и т. д.

Обратите внимание на то, что название заме­стителя формируется заменой суффикса -ан на суффикс -ил в названии соответствующего алкана.

3.     Формирование названия. В начале названия указывают цифры — номера атомов углерода, при которых находятся заместители. Если при данном атоме находятся несколько заместителей, то соот­ветствующий номер в названии повторяется дваж­ды через запятую (2,2-).

После номера через дефис указывают количество заместителей (ди — два, три — три, тетра — четыре, пента — пять) и на­звание заместителя (метил, этил, пропил). Затем без пробелов и дефисов — название главной цепи.

цепь называется как углеводород — член гомологического ряда метана (метан, этан, пропан и т. д.).

Названия веществ, структурные формулы кото­рых приведены выше, следующие:

•    структура А: 2-метилпропан;

•    структура Б: 3-этилгексан;

•    структура В: 2,2,4-триметилпентан;

•    структура Г: 2-метил 4-этилгексан.

Отсутствие в молекулах предельных углеводоро­дов полярных связей приводит к тому, что они плохо растворяются в воде, не вступают во взаимодействие с заряженными частицами (ионами). Наиболее ха­рактерными для алканов являются реакции, проте­кающие с участием свободных радикалов.

Физические свойства алканов

Первые четыре представителя гомологического ряда метана — газы.

Простейший из них — ме­тан — газ без цвета, вкуса и запаха (запах «газа», почувствовав который, надо звонить 04, опреде­ляется запахом меркаптанов — серосодержащих соединений, специально добавляемых к метану, используемому в бытовых и промышленных га­зовых приборах для того, чтобы люди, находя­щиеся рядом с ними, могли по запаху определить утечку).

Углеводороды состава от С5Н12 до С15Н32 — жидкости; более тяжелые углеводороды — твердые ве­щества. Температуры кипения и плавления алканов постепенно увеличиваются с возрастанием длины углеродной цепи. Все углеводороды плохо растворяются в воде, жидкие углеводороды являются рас­пространенными органическими растворителями.

Реакции замещения.

Наиболее характерными для алканов являются реакции свободнорадикаль­ного замещения, в ходе которого атом водорода за­мещается на атом галогена или какую-либо группу.

Приведем уравнения характерных реакций галогенирования:

В случае избытка галогена хлорирование может пойти дальше, вплоть до полного замещения всех атомов водорода на хлор:

Полученные вещества широко используются как растворители и исходные вещества в органи­ческих синтезах.

Реакция дегидрирования (отщепления водоро­да)

В ходе пропускания алканов над катализато­ром (Pt, Ni, Al2O3, Cr2O3) при высокой температуре (400-600 °C) происходит отщепление молекулы во­дорода и образование алкена:

Реакции, сопровождающиеся разрушением углеродной цепи. Все предельные углеводороды горят с образованием углекислого газа и воды. Га­зообразные углеводороды, смешанные с воздухом в определенных соотношениях, могут взрываться.

1. Горение предельных углеводородов — это сво­боднорадикальная экзотермическая реакция, кото­рая имеет очень большое значение при использова­нии алканов в качестве топлива:

В общем виде реакцию горения алканов можно записать следующим образом:

2. Термическое расщепление углеводородов.

Процесс протекает по свободнорадикальному механизму. Повышение температуры приводит к гомолитическому разрыву углерод-углеродной связи и образованию свободных радикалов.

Эти радикалы взаимодействуют между собой, обмениваясь атомом водорода, с образованием мо­лекулы алкана и молекулы алкена:

Реакции термического расщепления лежат в ос­нове промышленного процесса — крекинга угле­водородов. Этот процесс является важнейшей ста­дией переработки нефти.

3. Пиролиз. При нагревании метана до темпе­ратуры 1000 °С начинается пиролиз метана — раз­ложение на простые вещества:

При нагревании до температуры 1500 °С воз­можно образование ацетилена:

4. Изомеризация. При нагревании линейных углеводородов с катализатором изомеризации (хло­ридом алюминия) происходит образование веществ с разветвленным углеродным скелетом:

5. Ароматизация. Алканы с шестью или более углеродными атомами в цепи в присутствии ка­тализатора циклизуются с образованием бензола и его производных:

Алканы вступают в реакции, протекающие по свободнорадикальному механизму, т. к. все атомы углерода в молекулах алканов находятся в состоянии sp3-гибридизации. Молекулы этих веществ по­строены при помощи ковалентных неполярных С—С (углерод — углерод) связей и слабополярных С—Н (углерод — водород) связей.

В них нет участков с повышенной и с пониженной электронной плотностью, легко поляризуемых связей, т. е. таких связей, электронная плотность в которых может смещаться под действием внешних факторов (элек­тростатических полей ионов). Следовательно, алка­ны не будут реагировать с заряженными частицами, т. к.

связи в молекулах алканов не разрываются по гетеролитическому механизму.

Химические свойства алканов – конспект

Шпаргалка

Справочный материал для прохождения тестирования:

Таблица Менделеева Таблица растворимости

Источник: http://www.chem-mind.com/2017/03/27/%D1%82%D0%B5%D0%BC%D0%B0-%E2%84%9615-%D0%B0%D0%BB%D0%BA%D0%B0%D0%BD%D1%8B/

Алканы — номенклатура, получение, химические свойства

Алканы

Алканы — углеводороды, в молекулах которых атомы связаны одинарными связями и которые соответствуют общей формуле  CnH2n+2.

В молекулах алканов все атомы углерода находятся в состоянии sр3-гибридизации.

 Это означает, что все четыре гибридные орбитали атома углерода одинаковы по форме, энергии и направлены в углы равносторонней треугольной пирамиды — тетраэдра. Углы между орбиталями равны 109° 28′.

Вокруг одинарной углерод-углеродной связи возможно практически свободное вращение, и молекулы алканов могут приобретать самую разнообразную форму с углами при атомах углерода, близкими к тетраэдрическому (109° 28′), например, в молекуле н-пентана.

Особо стоит напомнить о связях в молекулах алканов. Все связи в молекулах предельных углеводородов одинарные. Перекрывание происходит по оси,
соединяющей ядра атомов, т. е. это σ-связи.

Связи углерод — углерод являются неполярными и плохо поляризуемыми. Длина С—С связи в алканах равна 0,154 нм (1,54 • 10—10 м). Связи С—Н несколько короче.

Электронная плотность немного смещена в сторону более электроотрицательного атома углерода, т. е. связь С—Н является слабополярной.

Отсутствие в молекулах предельных углеводородов полярных связей приводит к тому, что они плохо растворяются в воде, не вступают во взаимодействие с заряженными частицами (ионами). Наиболее характерными для алканов являются реакции, протекающие с участием свободных радикалов.

Гомологический ряд метана

Гомологи — вещества, сходные по строению и свойствам и отличающиеся на одну или более групп СН2.

Изомерия и номенклатура

Для алканов характерна так называемая структурная изомерия. Структурные изомеры отличаются друг от друга строением углеродного скелета. Простейший алкан, для которого характерны структурные изомеры, — это бутан.

Основы номенклатуры

1.   Выбор главной цепи. Формирование названия углеводорода начинается с определения главной цепи — самой длинной цепочки атомов углерода в молекуле, которая является как бы ее основой.
2.   Нумерация атомов главной цепи. Атомам главной цепи присваивают номера.

Нумерация атомов главной цепи начинается с того конца, к которому ближе стоит заместитель (структуры А, Б). Если заместители находятся на равном удалении от конца цепи, то нумерация начинается от того конца, при котором их больше (структура В).

Если различные заместители находятся на равном удалении от концов цепи, то нумерация начинается с того конца, к которому ближе старший (структура Г). Старшинство углеводородных заместителей определяется по тому, в каком порядке следует в алфавите буква, с которой начинается их название: метил (—СН3), затем  этил (-СН2-СН3),  пропил (-СН2-СН2-СН3) и т. д.

Обратите внимание на то, что название заместителя формируется заменой суффикса -ан на суффикс —ил в названии соответствующего алкана.
3. Формирование названия. В начале названия указывают цифры — номера атомов углерода, при которых находятся заместители.

Если при данном атоме находятся несколько заместителей, то соответствующий номер в названии повторяется дважды через запятую (2,2-). После номера через дефис указывают количество заместителей (ди — два, три — три, тетра — четыре, пента — пять) и название заместителя (метил, этил, пропил).

Затем без пробелов и дефисов — название главной цепи. цепь называется как углеводород — член гомологического ряда метана ( метан СН4, этан С2Н6, пропан C3H8, бутан С4Н10, пентан С5Н12, гексан С6Н14, гептан C7H16, октан C8H18, нонан С9Н20, декан С10Н22).

Физические свойства алканов

Первые четыре представителя гомологического ряда метана — газы.

Простейший из них — метан — газ без цвета, вкуса и запаха (запах «газа», почувствовав который, надо звонить 04, определяется запахом меркаптанов — серосодержащих соединений, специально добавляемых к метану, используемому в бытовых и промышленных газовых приборах для того, чтобы люди, находящиеся рядом с ними, могли по запаху определить утечку).

Углеводороды состава от С4Н12 до С15Н32 — жидкости; более тяжелые углеводороды — твердые вещества. Температуры кипения и плавления алканов постепенно увеличиваются с возрастанием длины углеродной цепи. Все углеводороды плохо растворяются в воде, жидкие углеводороды являются распространенными органическими растворителями.

Способы получения

Источник: http://himege.ru/alkany-nomenklatura-poluchenie-ximicheskie-svojstva/

Алканы – химические свойства: что это такое, как их получают и по какой формуле рассчитываются

Алканы

Алканами называют насыщенные углеводороды. В их молекулах атомы имеют одинарные связи. Структура определяется формулой CnH2n+2. Рассмотрим алканы: химические свойства, виды, применение.

Структура соединения

В структуре углерода есть четыре орбиты, по которым вращаются атомы. Орбитали обладают одинаковой формой, энергией.

Обратите внимание! Углы между ними составляют 109 градусов и 28 минут, они направлены на вершины тетраэдра.

Простая углеродная связь позволяет алкановым молекулам свободно вращаться, в результате чего структуры приобретают различные формы, образуя вершины при атомах углерода.

Алканы

Все алкановые соединения разделяются на две основные группы:

  1. Углеводороды алифатического соединения. Такие структуры обладают линейным соединением. Общая формула выглядит таким образом: CnH2n+2. Значение n равно или больше единицы, означает количество углеродных атомов.
  2. Циклоалканы циклической структуры. Химические свойства циклических алканов значительно отличаются от свойств линейных соединений. Формула циклоалканов в некоторой степени делает их схожими с углеводородами, обладающими тройной атомной связью, то есть с алкинами.

! Что такое марганец: изучаем химический элемент

Виды алканов

Существует несколько видов алкановых соединений, каждой из которых имеет свою формулу, строение, химические свойства и алкильный заместитель. Таблица содержит гомологический ряд

Название алканов

Общая формула насыщенных углеводородов — CnH2n+2. Изменяя значение n, получают соединение с простой межатомной связью.

Разновидности алканов, варианты реакций

В естественных условиях алканы являются химически инертными соединения. Углеводороды не реагируют на контактирование с концентратом азотной и серной кислоты, щелочью и перманганатом калия.

Одинарные молекулярные связи определяют реакции, характерные для алканов. Алкановые цепочки отличаются неполярной и слабо поляризуемой связью. Она несколько длиннее, нежели С-Н.

Общая формула алканов

Реакция замещения

Парафиновые вещества отличаются незначительной химической активностью. Объясняется это повышенной прочностью цепной связи, которую непросто разорвать. Для разрушения используют гомологический механизм, в котором принимают участие свободные радикалы.

! Для чего делают и что это такое гидролиз солей

Для алканов более естественны реакции замещения. Они не реагируют на молекулы воды и заряженные ионы. При замещении происходит замена водородных частиц галогеновыми и прочими активными элементами. Среди подобных процессов выделяют галогенирование, нитрирование и сульфохлорирование. Такие реакции используют для образования алкановых производных.

Свободнорадикальное замещение происходит в три основных этапа:

  1. Появление цепочки, на основе которой создаются свободные радикалы. В качестве катализаторов используют нагревание и ультрафиолетовый свет.
  2. Развитие цепочки, в структуре которой происходят взаимодействия активных и неактивных частиц. Так формируются молекулы и радикальные частицы.
  3. В завершение цепочка обрывается. Активные элементы создают новые комбинации или вовсе исчезают. Цепная реакция завершается.

Галогенирование

Процесс осуществляется по радикальному типу. Галогенирование происходит под воздействием ультрафиолета и температурного нагрева углеводородной и галогеновой смеси.

Весь процесс происходит по правилу Марковникова. Суть его заключается в том, что первым галогенированию подвергается атом водорода, принадлежащий гидрированному углероду. Процесс начинается с третичного атома и заканчивается первичным углеродом.

Сульфохлорирование

Другое название – реакция Рида. Осуществляется она методом свободнорадикального замещения. Таким образом, алканы реагируют на действие комбинации серного диоксида и хлора под воздействием ультрафиолетового излучения.

! Что такое ковалентная связь – полярная и неполярная

Реакция начинается с активизации цепного механизма. В это время из хлора выделяются два радикала. Действие одного направлено на алкан, в результате формируется молекула хлорводорода и алкильный элемент.

Другой радикал соединяется с диоксидом серы, создавая сложную комбинацию. Для равновесия из другой молекулы отбирают один атом хлора. В итоге получают сульфонилхлорид алкана.

Это вещество используют для выработки поверхностно-активных компонентов.

Сульфохлорирование

Нитрование

Процесс нитрования подразумевает соединение насыщенных углеродов с газообразным оксидом четырехвалентного азота и азотной кислотой, доведенной до 10% раствора. Для протекания реакции потребуется низкий уровень давления и высокая температура, приблизительно 104 градуса. В результате нитрования получают нитроалканы.

Отщепление

Посредством отделения атомов проводят реакции дегидрирования. Молекулярная частица метана полностью разлагается под влиянием температуры.

Дегидрирование

Если от углеродной решетки парафина (кроме метана) отделить атом водорода, образуются непредельные соединения. Эти реакции осуществляются в условиях значительных температурных режимов (400-600 градусов). Также используются различные металлические катализаторы.

Получение алканов происходит путем проведения гидрирования непредельных углеводородов.

Процесс разложения

При влиянии температур во время алкановых реакций могут происходить разрывы молекулярных связей, выделение активных радикалов. Эти процессы известны под названием пиролиз и крекинг.

При нагревании реакционного компонента до 500 градусов, молекулы начинают разлагаться, а на их месте формируются сложные радикальные алкильные смеси. Таким способом получают алканы и алкены в промышленности.

! Как отличить металлы и неметаллы в таблице элементов Менделеева

Окисление

Это химические реакции, основанные на отдаче электронов. Для парафинов характерно автоокисление. В процессе используется окисление насыщенных углеводородов свободными радикалами. Алкановые соединения в жидком состоянии преобразуются в гидроперекись.

Сначала парафин вступает в реакцию с кислородом. Образуются активные радикалы. Затем происходит реакция алкильной частицы со второй молекулой кислорода. Формируется перекисный радикал, который в последствие взаимодействует с алкановой молекулой.

В результате процесса выделяется гидроперекись.

Реакция окисления алканов

Применение алканов

Углеродные соединения имеют широкое применение практически во всех основных сферах человеческой жизни. Некоторые из видов соединений являются незаменимыми для определенных отраслей производства и комфортного существования современного человека.

Газообразные алканы – основа ценного топлива. Главным компонентом большинства газов является метан.

Метан обладает способностью создавать и выделять большое количество тепла. Поэтому его в значительных объемах применяют в промышленности, для потребления в бытовых условиях. При смешивании бутана и пропана получают хорошее бытовое топливо.

Метан используют при производстве таких продуктов:

  • метанол;
  • растворители;
  • фреон;
  • типографская краска;
  • топливо;
  • синтез-газ;
  • ацетилен;
  • формальдегид;
  • муравьиная кислота;
  • пластмасса.

Применение метана

Жидкие углеводороды предназначены для создания топлива для двигателей и ракет, растворителей.

Высшие углеводороды, где количество атомов углерода превышает 20, участвуют в производстве смазочных веществ, лакокрасочной продукции, мыла и моющих средств.

Комбинация жирных углеводородов, в которых менее 15 атомов Н, являет собой вазелиновое масло. Эта безвкусная прозрачная жидкость применяется в косметике, в создании парфюмов, в медицинских целях.

! Как расставлять и как определить степень окисления элементов

Вазелин – результат соединения твердых и жирных алканов с количеством атомов углерода меньше 25. Вещество участвует в создании медицинских мазей.

Парафин, полученный в результате комбинирования твердых алканов, является твердой безвкусной массой, белого цвета и без аромата. Из вещества производят свечи, пропитывающую субстанцию для упаковочной бумаги и спичек. Также парафин популярен при осуществлении тепловых процедур в косметологии и медицине.

Обратите внимание! На основе алкановых смесей также делают синтетические волокна, пластмассы, моющую химию и каучук.

Галогенопроизводные алкановые соединения выполняют функции растворителей, хладагентов, а также основного вещества для дальнейшего синтеза.

Вывод

Алканы являются ациклическими углеводородными соединениями, обладающими линейной или разветвленной структурой. Между атомами установлена одинарная связь, которая не поддается разрушению.

Реакции алканов, основанные на замещении молекул, свойственные этому виду соединений. Гомологический ряд имеет общую структурную формулу CnH2n+2.

Углеводороды относятся к насыщенному классу, поскольку содержат максимально допустимое количество атомов водорода.

Источник: https://znaniya.guru/himiya/chto-takoe-alkany-stroenie-i-himicheskie-svojstva.html

Алканы: физические и химические свойства, применение

Алканы

Одним из первых типов химических соединений, изучаемых в школьной программе по органической химии, являются алканы. Они относятся к группе предельных (иначе — алифатических) углеводородов. В их молекулах присутствуют только одинарные связи. Атомам углерода свойственна sp³-гибридизация.

Изомерия алканов

Изомерами называют те вещества, молекулярная формула которых совпадает, однако строение или структура отличается.

Для класса алканов характерны 2 типа изомерии: углеродного скелета и оптическая изомерия.

Приведём пример структурного изомера (т. е. вещества, отличающимся лишь строением углеродного скелета) для бутана C4H10.

Оптическими изомерами называют такие 2 вещества, молекулы которых имеют похожую структуру, но не могут быть совмещены в пространстве. Явление оптической или зеркальной изомерии возникает у алканов, начиная с гептана C7H16.

Номенклатура веществ

Чтобы дать алкану правильное название, необходимо воспользоваться номенклатурой ИЮПАК. Для этого использоваться следующая последовательность действий:

  1. Выбрать самую длинную неразветвленную цепь из атомов углерода.
  2. Пронумеровать атомы в цепи. Нумерацию необходимо начинать с той стороны, к которой ближе находится заместитель (ответвление).
  3. Сформировать и записать название вещества. В его начале цифрами нужно указать, при каких атомах находятся заместители. После номера указывается их количество («ди» — 2 заместителя, «три» — 3, «тетра» — 4), затем через дефис — их названия, перечислять которые нужно в алфавитном порядке. После этого указывается наименование главной цепи. Названия заместителей формируются при помощи суффикса -ил: так, заместитель -CH3 получит название метил, а -CH2-CH2-CH3 — пропил. цепь именуется так же, как и алкан с соответствующим количеством углеродных атомов.

По приведённому выше плану попробуем дать название следующему алкану.

  1. Нужно выбрать самую длинную цепь. Очевидно, что ей является последовательность из 7 атомов углерода.
  2. Следует определить, с какой стороны пойдёт нумерация. В конкретном случае она начнётся с того конца, ближе к которому находится ответвление, т. е. с левого края.
  3. В приведённой молекуле есть 4 заместителя с 1 атомом углерода (при 2, 4 и дважды при 5 атомах) и 1 заместитель с 2 атомами (при 4 атоме в главной цепи). Основная цепь состоит из 7 атомов, её название — гептан. Сформулированное для вещества имеет название: 2,3,5,5-тетраметил-4-этилгептан.

Химические свойства

В обычных условиях алканы достаточно малоактивны. Это объясняется прочностью σ-связей между атомами C-C и C-H. Поэтому необходимо обеспечить специальные условия (например, довольно высокую температуру или свет), чтобы проведение химической реакции стало возможным.

Реакции замещения

К реакциям этого типа относятся галогенирование и нитрование. Галогенирование (взаимодействие с Cl2 или Br2) происходит при нагревании или же под воздействием света. Во время реакции, протекающей последовательно, образуются галогеналканы.

Для примера можно записать реакцию хлорирования этана.

Бромирование будет проходить аналогичным образом.

Нитрование — это реакция со слабым (10%) раствором HNO3 или с оксидом азота (IV) NO2. Условия для проведения реакций — температура 140 °C и давление.

C3H8 + HNO3 = C3H7NO2 + H2O.

В результате образуются два продукта — вода и аминокислота.

Реакции разложения

При проведении реакций разложения всегда требуется обеспечивать высокую температуру. Это необходимо для разрыва связей между атомами углерода и водорода.

Так, при проведении крекинга потребуется температура в интервале от 700 до 1000 °C. Во время реакции разрушаются -С-С- связи, образуется новый алкан и алкен:

C8H18 = C4H10 + C4H8

Исключение — крекинг метана и этана. В результате этих реакций выделяется водород и образуется алкин ацетилен. Обязательным условием является нагревание до 1500 °C.

C2H4 = C2H2 + H2

Если превысить температуру в 1000 °C, можно добиться пиролиза с полным разрывом связей в соединении:

C3H8 = 3C + 4H2

Во время пиролиза пропила был получен углерод C, а также выделился водород H2.

Реакции дегидрирования

Дегидрирование (отщепление водорода) происходит по-разному для различных алканов. Условия проведения реакции — температура в пределах от 400 до 600 °C, а также присутствие катализатора, в роли которого могут выступать никель или платина.

Из соединения, в углеродном скелете которого 2 или 3 атома C, образуется алкен:

C2H6 = C2H4 + H2.

Если в цепи молекулы 4—5 атомов углерода, то после дегидрирования получится алкадиен и водород.

C5H12 = C4H8 + 2H2.

Начиная с гексана, во время реакции образуется бензол или производные от него вещества.

C6H14 = C6H6 + 4H2

Следует также упомянуть реакцию конверсии, проводящуюся для метана при температуре 800 °C и в присутствии никеля:

CH4 + H2O = CO + 3H2

Для других алканов конверсия нехарактерна.

Окисление и горение

Если алкан, нагретый до температуры не более 200 °C, будет взаимодействовать с кислородом в присутствии катализатора, то в зависимости от прочих условий проведения реакции будут различаться получаемые продукты: это могут быть представители классов альдегидов, карбоновых кислот, спиртов или кетонов.

В случае полного окисления алкан сгорает до конечных продуктов — воды и CO2:

C9H20 + 14O2 = 9CO2 + 10H2O

Если во время окисления количество кислорода оказалось недостаточным, конечным продуктом вместо углекислого газа станет уголь или CO.

Проведение изомеризации

Если обеспечить температуру около 100—200 градусов, для неразветвленных алканов становится возможна реакция перегруппировки. Второе обязательное условие для проведения изомеризации — присутствие катализатора AlCl3. В таком случае происходит изменение структуры молекул вещества и образуется его изомер.

Получение и применение алканов

Значительную долю алканов получают, выделяя их из природного сырья. Чаще всего перерабатывают природный газ, главным компонентом, которого является метан или же подвергают крекингу и ректификации нефть.

А также следует вспомнить о химических свойствах алкенов. В 10 классе одним из первых лабораторных способов, изучаемых на уроках химии, является гидрирование непредельных углеводородов.

C3H6 + H2 = C3H8

Например, в результате присоединения водорода к пропилену получается единственный продукт — пропан.

При помощи реакции Вюрца из моногалогеналканов получают алканы, в структурной цепи которых число углеродных атомов удвоено:

2CH4H9Br + 2Na = C8H18 + 2NaBr.

Ещё один способ получения — взаимодействие соли карбоновой кислоты со щёлочью при нагревании:

C2H5COONa + NaOH = Na2CO3 + C2H6.

Кроме того, метан иногда получают в электрической дуге (C + 2H2 = CH4) или при взаимодействии карбида алюминия с водой:

Al4C3 + 12H2O = 3CH4 + 4Al (OH)3.

Алканы широко применяются в промышленности в качестве низкого по стоимости топлива. А также их используют как сырьё для синтеза других органических веществ. С этой целью обычно применяют метан, необходимый для получения аммиака и синтез-газа. Некоторые другие предельные углеводороды используют, чтобы получать синтетические жиры, а также как основу для смазочных материалов.

Для наилучшего понимания темы «Алканы» создан не один видеоурок, в котором подробно рассмотрены такие темы, как структура вещества, изомеры и номенклатура, а также показаны механизмы химических реакций.

Источник: https://1001student.ru/himiya/alkany-fizicheskie-i-himicheskie-svojstva-primenenie.html

Предельные углеводороды. Алканы

Алканы

Алканы (насыщенные углеводороды) – линейного или разветвлённого строения, содержащие только простые связи и образующие гомологический ряд с общей формулой CnH2n+2.

Алканы являются насыщенными углеводородами и содержат максимально возможное число атомов водорода. Простейшим представителем класса является метан ( CH4).

По номенклатуре ИЮПАК названия алкано в образуются при помощи суффикса -ан путём добавления к соответствующему корню от названия углеводорода.

Выбирается наиболее длинная неразветвлённая углеводородная цепь так, чтобы у наибольшего числа заместителей был минимальный номер в цепи.

В названии соединения цифрой указывают номер углеродного атома, при котором находится замещающая группа или гетероатом, затем название группы или гетероатома и название главной цепи.

Для алканов характерен тип гибридизации – sp3.

Пространственное строение – у метана тетраэдрическая форма молекулы, у алканов n>4 – зигзагообразная форма.

Изомерия предельных углеводородов обусловлена простейшим видом структурной изомерии — изомерией углеродного скелета. Гомологическая разница – -CH2-.

Физические свойства

Температуры плавления и кипения увеличиваются с молекулярной массой и длиной главной углеродной цепи.

При нормальных условиях неразветвлённые алканы с CH4 до C4H10 — газы; с C5H12 до C13H28 — жидкости; после C14H30 — твёрдые тела. Температуры плавления и кипения понижаются от менее разветвленных к более разветвленным.

Газообразные алканы горят бесцветным или бледно-голубым пламенем с выделением большого количества тепла.

1. Реакции замещения

Галогенирование — это одна из реакций замещения. В первую очередь галогенируется наименее гидрированый атом углерода (третичный атом, затем вторичный, первичные атомы галогенируются в последнюю очередь). Галогенирование алканов проходит поэтапно — за один этап замещается не более одного атома водорода:

CH4 + Cl2 → CH3Cl + HCl (хлорметан)
CH3Cl + Cl2 → CH2Cl2 + HCl (дихлорметан)
CH2Cl2 + Cl2 → CHCl3 + HCl (трихлорметан)
CHCl3 + Cl2 → CCl4 + HCl (тетрахлорметан).

Нитрование алканов (реакция Коновалова)

На алканы действует pазбавленная азотная кислота пpи нагpевании и давлении. В pезультате пpоисходит замещение атома водоpода на остаток азотной кислоты – нитpогpуппу NO2.

R-H + HO-NO2 → R-NO2 + H2O

Эту pеакцию называют pеакцией нитpования, а пpодукты pеакции – нитpосоединениями.

2. Горение

Основным химическим свойством предельных углеводородов, определяющих их использование в качестве топлива, является реакция горения. Пример:

CH4 + 2O2 → CO2 + 2H2O + Q

Значение Q достигает 46 000 — 50 000 кДж/кг.

В случае нехватки кислорода вместо углекислого газа получается угарный газ или уголь (в зависимости от концентрации кислорода).
В общем виде реакцию горения алканов можно записать следующим образом:

СnН2n+2+ (1,5n+0,5)O2 → nCO2 + (n+1)H2O

3. Крекинг алканов

Реакции разложения происходят лишь под влиянием больших температур. Повышение температуры приводит к разрыву углеродной связи и образованию свободных радикалов.

Примеры:

CH4 → C + 2H2 (t > 1000 °C)

C2H6 → 2C + 3H2

Крекинг – процесс термического разложения углеводородов, в основе которого лежат реакции расщепления углеродной цепи крупных молекул с образованием соединений с более короткой цепью.

Термический крекинг. При температуре 450–700oС алканы распадаются за счет разрыва связей С–С (более прочные связи С-Н при такой температуре сохраняются) и образуются алканы и алкены с меньшим числом углеродных атомов.

Например:

C6H14 → C2H6 + C4H8

Каталитический крекинг проводят в присутствии катализаторов (обычно оксидов алюминия и кремния) при температуре450°С и атмосферном давлении. При этом наряду с разрывом молекул происходят реакции изомеризации и дегидрирования:

2CH4 1500°C→ H–C≡C–H (ацетилен) + 3H2

4. Изомеризация

Под влиянием катализаторов при нагревании углеводороды нормального строения подвергаются изомеризации – перестройке углеродного скелета с образованием алканов разветвленного строения.

CH3–CH2–CH2–CH2–CH3 (пентан) –t°,AlCl 3 → CH3–CH2–CH2–CH3I

CH3 (2-метилбутан)

5. Дегидрирование алканов

При нагревании алканов в присутствии катализаторов происходит их каталитическое дегидрирование за счет разрыва связей С-Н и отщепления атомов водорода от соседних углеродных атомов. При этом алкан превращается в алкен с тем же числом углеродных атомов в молекуле:

CnH2n+2 → CnH2n + H2

CH3—CH3 → CH2=CH2 + H2 (этан → этен)

CH3—CH2—CH2—CH3 → CH2= CH—CH2—CH3+ H2 (бутан → бутен-1)

Наряду с бутеном-1 в этой реакции образуется также бутен-2.

6. Реакции окисления алканов

Алканы – соединения с низкими степенями окисления углерода, и в зависимости от условий реакции они могут окисляться с образованием различных соединений.

Получение алканов

Алканы выделяют из природных источников (природный и попутный газы, нефть, каменныйуголь). Используются также синтетические методы.

1. Крекинг нефти (промышленный способ)

При крекинге алканы получаются вместе с непредельными соединениями (алкенами). Этот способ важен тем, что при разрыве молекул высших алканов получается очень ценное сырье для органического синтеза: пропан, бутан, изобутан, изопентан идр.

2. Гидpиpование непpедельных углеводоpодов:

CnH2n + H2→CnH2n+2 ←-H2 CnH2n-2

алкены → алканы ← алкины

3. Газификация твердого топлива (при повышенной температуре и давлении, катализатор Ni):

С + 2Н2 → СН4

4. Из синтез-газа (СО + Н2) получают смесь алканов:

nСО + (2n+1)Н2→ CnH2n+2+ nH2O

5. Синтез более сложных алканов из галогенопpоизводных с меньшим числом атомов углеpода:

2CH3Cl + 2Na → CH3-CH3 + 2NaCl (реакция Вюрца)

6. Из солей карбоновых кислот:

а) сплавление со щелочью (реакция Дюма

CH3COONa + NaOH → CH4 + Na2CO3

ацетат натрия

б) электролиз по Кольбе

2RCOONa + 2H2O → R-R + 2CO2+ H2+ 2NaOH

на аноде → на катоде

7. Разложение карбидов металлов (метанидов) водой:

Al4C3 + 12HOH → 4Al(OH)3 + 3CH4

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.

    ×
    Рекомендуем посмотреть