Дыхание растений

Процесс дыхания растений

Дыхание растений

В конце XVIII века рядом ученых было установлено, что растения не только погло­щают углекислый газ, но и выделяют его. Это открытие получило название  процесс дыхания растений.

Процесс дыхания растений

История изучения химизма дыхания

В конце XIX столетия А. Н. Бахом была разработана теория активации молекулярного кислорода. Молекулярный кислород не может вступать в соединения с окисляемым веществом, так как обе его связи за­няты.

Для того чтобы его активировать, необходимо освобо­дить связи. Активированный кислород может соединяться с окисляемым веществом, образуя перекись, которая, распадаясь, осуществляет дальнейшее окисление.

В работах В. И. Палладина указывается, что в процессе ды­хания происходит активация водорода дыхательного вещества. Активация водорода заключается в том, что ферменты дегидрогеназы отнимают водород от дыхательного материала, вследст­вие чего последний окисляется, а активированный водород со­единяется с кислородом.

В настоящее время общепризнано, что в процессе дыхания активируется как кислород, так и водород. В дальнейшем рабо­тами С. П. Костычева была доказана связь между дыханием и брожением.

Начальная фаза превращения сахара происходит одинаково и при дыхании, и при брожении и образуются одина­ковые промежуточные продукты. Затем при дыхании эти про­дукты окисляются до СО2 и Н2О, а при брожении образуются спирт и СО2. В последнем случае выделяется мало энергии: на одну грамм-молекулу сахара — 48 ккал.

В разработке химизма дыхания принимали участие многие ученые. Л. А. Иванов показал значение фосфорной кислоты в процессе дыхания: окислению подвергается не свободная молекула сахара, а ее фосфорный эфир.

Это указывает на то, что в процессе дыхания не только распадаются, но и синтезируются сложные органические соединения. А. Сент-Джорджи, X. Кребс и С. М. Джонсон детально исследовали химизм дыхания и пока­зали роль органических кислот в этом процессе.

Дыхание и фотосинтез

Дыхание это процесс, свойственный всем живым организмам. Оно представляет собой окислительный распад сложных органических соединений (в первую очередь углеводов), конечными продуктам которого являются углекислый газ и вода с выделением энергии. Дыхание как физиологический процесс может быть представлено следующей схемой:

С6Н12О6 + 6О2 → 6СО2 + 6Н2О + 686 ккал.

Однако процесс окисления не столь прост, как показано на схеме, а идет через ряд промежуточных этапов. Значение дыха­ния состоит не только в освобождении энергии, но и в том, что при постепенном распаде углеводов образуется ряд различных промежуточных соединений, которые могут служить для синтеза органических веществ, например белков, жиров и других.

Дыхание и фотосинтез

Таким образом дыхание — окислительный распад сложных органиче­ских соединений — является главным руслом превращения веществ и энергии в растении.

Сравнивая суммарные уравнения фотосинтеза и дыхания, видим, что при фотосинтезе образуются органические вещества с использованием солнечной энергии, а при дыхании растений эта энергия, накопленная в органическом веществе, освобож­дается:

6СО2 + 6Н2O → (энергия света(686ккал)/хлорофилл) → С6Н12О6 + 6О2 (фотосинтез),

С6Н12О6 + 6О2 → 6СО2 + 6Н2О + 686 ккал (дыхание).

При образовании одной грамм-молекулы сахара в процессе фотосинтеза затрачивается 686 ккал солнечной энергии; такое же количество энергии выделяется и при ее окислении в про­цессе дыхания. Таким образом, в энергетическом отношении ды­хание — прямая противоположность фотосинтезу.

У растений в отличие от животных нет специальных органов дыхания, и кислород непосредственно поступает в каждую жи­вую клетку. Благодаря большому развитию поверхностей, тесно связанных с воздушным питанием, доступ воздуха к каждой клетке облегчен, и поэтому для поступления кислорода в клетку и освобождения ее от образовавшегося углекислого газа не тре­буется никаких дополнительных органов.

Процесс дыхания у разных зеленых растений и их органов неодина­ков и его сравнивают по интенсивности, т. е. по количеству вы­деленного в процессе дыхания углекислого газа на единицу веса в единицу времени.

Дыхание тесно связано с ростом, поэтому чем интенсивнее идет рост растения, тем сильнее процесс дыхания.

Интенсив­ность дыхания также зависит от возраста растений: у молодых растений дыхание протекает более энергично, с возрастом интен­сивность дыхания уменьшается.

Ниже показано изменение ин­тенсивности дыхания в процессе индивидуального развития                                (по Б. А. Рубину).
Листья капусты белокочанной (сорт Амагер)
Возраст растений (в сутках)38243170
Дыхание (в мг С02 на кг сырого веса в час)314155526727
Листья подсолнечника
Возраст растений (в сутках)2236506499
Дыхание (в мг С02 на кг сырого веса в час)30087465925

Интенсивность дыхания различных ор­ганов растения зависит от наличия в клет­ках живого содержимого. Наиболее интен­сивно дышат цветки.

При дыхании массив­ных цветков, например Амазонской Виктории регии (Victoria regia), внутри цветков поднимается температура, пре­вышающая температуру воздуха на 12°.

При дыхании цветков кувшинки Виктории регии температура в них поднимается выше температуры воздуха

Процесс дыхания растений можно наглядно наблюдать на прорастающих семенах пшеницы.

Прорастающие семена также отличаются высокой интенсивностью дыхания.

Если их поместить в хорошо изолированный от потери тепла приемник, например в дьюаровский сосуд, то можно наблюдать значительное повышение температуры, достигающее 30 —50°.

Прорастающие семена пшеницы в дьюаровском сосуде

В этом случае семена могут даже погибнуть в связи с высокой температурой.

(4 4,75 из 5)
Загрузка…

Источник: https://LibTime.ru/agro/process-dyxaniya-rastenij.html

Фотосинтез и дыхание растений | Обучонок

Дыхание растений

Нам известно, что процесс фотосинтеза осуществляется только днем с использованием энергии Солнца. Откуда растения получают энергию ночью, когда фотосинтез невозможен? Что происходит зимой, когда деревья сбрасывают свои зеленые листья? Неужели жизнь растения совсем замирает? В статье мы узнаем всё о дыхании растении.

Первое, что мы обычно узнаем о растениях на уроках биологии – это то, что они снабжают нас кислородом и очищают воздух от углекислого газа. Да, действительно, растения в процессе фотосинтеза используют СО2 для синтеза сахаров и выделяют кислород. А как же дыхание? Дышат ли растения?

Растения так же, как и мы с вами, относятся к аэробным организмам, а это значит, что для их жизнедеятельности нужен кислород. В растительных клетках, как и в клетках других ядерных организмов, есть “энергетические станции” – митохондрии. Для чего?

Процесс дыхания растений

В процессе дыхания органические вещества (как правило, углеводы) “сгорают” в митохондриях с использованием кислорода. Синтезируется энергетическая валюта клеток – АТФ, образуются вода и углекислый газ, а часть энергии выделяется в форме тепла.

Итак, фотосинтез у растений происходит на свете, а дыхание – 24 часа в сутки! Фотосинтез осуществляют только зеленые части растений, а дышат все его части!

Днем, когда фотосинтез и дыхание осуществляются одновременно, количество кислорода, образующегося обычно превышает количество выделенного углекислого газа. Ночью в воздух выделяется только углекислый газ.

Именно с этим связано существование ложных представлений о растениях-вампирах, которые отбирают энергию (это объясняют чрезмерным потреблением кислорода и выделением углекислого газа).

Но приходилось ли вам ночевать когда в лесу в палатке?

Наверное, дышалось легко и никто не почувствовал недостатка кислорода. Надо понимать, что количество выделенного растением углекислого газа или поглощенного кислорода ночью незначительная по сравнению с тем количеством кислорода, которое она выделяет в день.

На самом деле люди, дыша, выделяют значительно больше углекислого газа, чем растения. Для того, чтобы образовалось столько углекислого газа, сколько его выделяет обычный человек, надо бы было почти 10000 кг растений! Если в вашей спальне их именно столько – открывайте двери и окна. Столько нет? Спите спокойно!

Итак, комнатные растения – прекрасные поставщики кислорода, особенно в зимний период.

Многие из них обладают бактерицидными свойствами, а один из лучших способов очистки воздуха – правильное озеленение комнаты, в том числе использование растений, которые выделяют фитонциды (природные антибиотики). Установлено, что люди, у которых дома много растений, гораздо реже болеют, в частности гриппом.

От чего зависит дыхание растений?

Дышат все части растений: листья, стебли, корни и даже цветы. Интересно, что корни дышат слабее, чем фотосинтезирующие листья. А лепестки цветов (видоизмененные листья) дышат в 18-20 раз активнее, чем листья. Лиственные деревья дышат активнее, чем хвойные, а у растений засушливых земель – суккулентов – скорость дыхания очень низкая.

Интенсивность дыхания зависит от многих факторов: времени года, времени суток, температуры, интенсивности освещения и др.

Всего в процессе развития клеток, тканей, органов растений интенсивность дыхания сначала растет, достигает максимума на время максимальной скорости роста, а затем постепенно снижается.

Человек также больше энергии требует в период активного роста. Молодые деревья тратят треть суточных продуктов фотосинтеза на дыхание.

Части растений, завершили рост (старые листья, стебли, древесина или созревшее семена) имеют невысокую интенсивность дыхания, но она никогда не падает до нуля.

У растений также бывают периоды кратковременного и усиленного дыхания. В сочных плодах перед полным созреванием происходит временная (2-3 дня) активация дыхания – климактерический подъем дыхания. Примером проявления активного дыхания растений является высокое содержание углекислого газа (до 13%, в норме – 0,03%) в атмосфере элеваторов, где хранят зерно.

Вследствие дыхания образуется вода, которая увлажняет семена, и выделяется тепло. Дышать в таких помещениях очень трудно. Температура семена на элеваторах может достигать + 60-90 ° С, и тогда семена “горят” и теряют способность прорастать.

Дыхание зависит и от атмосферного давления. Американский биолог Фрэнк Браун обнаружил, что дыхание в клетках ячеек клубней картофеля усиливается за роста атмосферного давления и наоборот. Глазки картофеля на двое суток раньше, чем барометр “предусматривают” изменение погоды. Перед дождем, то есть за снижения давления, они задерживают дыхание.

Дыхание растений происходит при различных температурах от -25 ° С до + 50- 60 ° С. Для большинства растений минимальная температура дыхания составляет 0 ° С. В промежутке температур от 0 ° C до 30 ° C с повышением температуры на каждые 10 ° C интенсивность дыхания возрастает только в 2 раза. При температурах свыше 40-50 ° C дыхания замедляется.

Высокие температуры – одна из причин усиленного дыхания тропических растений, которые “сжигают” 70-80% суточных продуктов фотосинтеза.

Самая благоприятная температура для дыхания 35-40 ° С, для фотосинтеза она ниже на 5-10 ° С.

Поэтому при высоких температурах растение интенсивно расходует органические вещества, а их синтез почти прекращается, что приводит к снижению урожая многим видам растений.

Что происходит с растениями зимой?

Да, растения продолжают дышать зимой! Летних запасов углеводов вполне достаточно для того, чтобы пережить зиму и восстановить рост весной. Почки плодовых деревьев дышат с -14 ° С, а хвоя сосны – даже при -25 ° С!

Усиливаются процессы дыхания у растений, пораженных болезнью. Профессор Калифорнийского университета С. Е. Ярвуд измерял температуру листьев растений, инфицированных вирусом или грибком, и сравнивал ее с температурой здорового растения. Температура больных частей растения повышалась аж на 2 ° С.

Разве не напоминают вам растения больных детей? Вспомните себя с температурой 38,6 ° С. Повышенная температура в устойчивых к заболеванию растений длится дольше, чем у неустойчивых.

Оказывается, что в таких условиях в клетках синтезируются защитные фенольные соединения, ядовитые для возбудителей болезни.

Усиленно дышат и раненые растения, что тоже приводит к заметному повышению их температуры в участках повреждения.

Дыхание – это не только процесс поставки энергии для роста и развития растительного организма. От дыхания зависит поглощение воды и питательных минеральных элементов.

На промежуточных этапах дыхания образуются соединения (органические кислоты, сахар), используемых в различных реакциях обмена веществ.

В засушливых условиях вода выделяется при дыхании, что может уберечь растение от обезвоживания! Подобно механизмам обеспечения водой верблюда, правда?

Как дышат растения?

Растения не имеют специальных органов дыхания, похожих на наши легкие. Кислород поступает к ним через естественные отверстия. Кроме этого, растения используют тот кислород, который образуется в процессе фотосинтеза. Надземные части растений получают кислород из воздуха непосредственно через поры.

Поры в листьях – это устьица, Поры на ветвях деревьев – чечевички. Как правило, устьица находятся с нижней стороны листочка. Они образованы особыми замыкающими клетками, содержащие зеленый пигмент хлорофилл. Через щель в листочек поступает воздух и испаряется влага.

На листочках водных растений, листья которых плавают на поверхности воды (например, кувшинки), устьица расположены только на верхней поверхности листа. Количество устьиц на 1 мм2 листа в среднем составляет 300! Меньше устьиц обнаружено в листьях традесканции – 14 на мм2, а больше всего – в листьях дуба болотного – 1200 на мм2. Корни растений имеют поры.

На берегах Юго-Восточной Азии, Океании, Австралии, Мадагаскара, Экваториальной Африки на грани моря и суши растут мангровые растения. К ним относятся около 40 видов деревьев и кустарников, приспособившиеся к приливам, во время которых они до верхушки кроны погружаются в воду.

Мангры называют растениями-амфибиями. Во время отлива обнажается илистый грунт, пронизанный корнями и почти без кислорода. Как же мангровые растения выживают в таких условиях?

Мангры получают кислород с помощью особых дыхательных корней-пневматофор, которые, в отличие от обычных, растут вверх, имеют пористое строение и большие межклетники, заполненные воздухом. К условиях недостатка кислорода приспособлены и листья таких растений.

Так, авиценния – растение, названная в честь древнего персидского учёного-энциклопедиста врача и философа Авиценна, – во время прилива почти вся покрывается
водой, а нижняя поверхность ее листьев густо опушенная.

Под водой между волосками задерживаются пузырьки воздуха, кислород которого растение использует во время затопления. А корни авиценнии – это прямостоячие вырасти, поднимающиеся на 20-25 см над поверхностью почвы.

Благодаря хорошо развитой системе межклетников, воздух легко поступает в корень.

Пневматофоры есть не только у мангров, но и у растений, растущих на пресноводных болотах тропических и умеренных широт. В Новой Гвинее они есть у ротанговой пальмы, которую используют для изготовления мебели. Стебли этой лианы достигают иногда 200-300 м.

В Северной Америке пневматофоры у болотного кипариса – дерева, произрастающего в 35-45 м с диаметром ствола до 2 м. Цилиндрические пневматофоры этого дерева выступают над поверхностью почвы, особенно у растений, произрастающих недалеко от воды. На болоте люди могут ходить по пневматофору, как по мостовой. Мексиканцы устраивают в них улья.

Могут ли растения жить без кислорода?

В воздухе содержится примерно 21% кислорода.
Этого вполне достаточно для нормальной жизнедеятельности растений. Правильный уход за растениями способствует нормальному дыханию. Регулярно мойте или протирайте листики от пыли. Но помните, что с опушенными листочками делать это нужно очень осторожно, желательно использовать специальную кисточку.

Есть случаи, когда растения оказываются в условиях недостатка кислорода. Чаще всего эта проблема касается корней. В хорошо аэрированной почве кислорода не меньше, чем в воздухе – 7-12%, в плохо обработанном его содержание снижается до 2%. Именно поэтому не стоит обильно поливать комнатные растения.

Блокировка доступа воздуха к корням приводит к тому, что растение буквально тонет в воде загнивают корни, листочки опускаются и желтеют.

Как помочь такой ситуации?

Выньте растение из горшка, очистите от почвы, промойте и осмотрите корни. Если они прочные и невредимы, пересадите растение в горшок со свежей, чуть увлажненной землей. На дно горшка насыпьте керамзит или мелкие глиняные черепки (дренаж), что будет способствовать лучшему газообмена корней.

Поместите горшок в затененное место подальше от прямых солнечных лучей и поливайте только тогда, когда верхний слой почвы подсохнет вглубь на несколько сантиметров. Еще меньше кислорода в очень заболоченных почвах. В них корни повреждаются, отмирают, и рост растений замедляется или вовсе прекращается.

Мимоза , которая способна моментально составлять свои листочки в ответ на прикосновение, в анаэробных условиях цепенеет и не реагирует ни на одно раздражение.

Выдающийся французский ученый Луи Пастер показал, что растения в среде без кислорода образуют не только СО2, но и спирт. В естественных условиях это возможно при вымокании.

Спирт обнаруживают даже в воде у растений. Вследствие частых разливов в бассейне реки Амазонки образуются непроточные мелкие водоемы, которые очень хорошо прогреваются и освещаются. Затопленые растения таких водоемов превращают сахар в спирт – происходит процесс брожения.

Местные жители научились использовать такую “воду” для приготовления напитков. Некоторые виды амазонских рыб переходят к нересту лишь тогда, когда в водоемах есть определенное количество спирта. Незначительные количества спирта у плодах яблок, мандаринов и др. Однако некоторые растения, которые живут в условиях постоянного затопления, приспособились к недостатку кислорода.

Так возникли дыхательные корни или пневматофоры у растений мангровых зарослей. Знакомый вам ситник имеет особую ткань – аеренхиму, для которой свойственны большие межклетники, заполненные воздухом.

Аэренхима образуется и в корнях других растений в ответ на недостаток кислорода (см. Рис.

), Формируются дополнительные корни, которые значительно толще, имеют хорошо развитую аеренхиму и обеспечивают процессы дыхания.

Ученые установили, что рогоз, ива, другие болотные растения в условиях нормального обеспечения кислородом дышат в 2-3 раза слабее, чем растения, не приспособленные к кислородному дефицита (горох, фасоль, пшеница или тополь).

Сниженая интенсивность дыхания связана с их низкой потребностью в кислороде. сахаров в их корнях выше, а расходы за недостатка кислорода экономные. Интересно, что болотные и водные растения в условиях анаэробиозу накапливают не этиловый спирт, а менее ядовитые для растения молочную и яблочную кислоты.

Таким образом, водные и болотные растения приспособились к недостатку кислорода двумя способами: путем изменения обмена веществ и особого строения. Несмотря на полезные приспособления, длительная нехватка кислорода вредит даже таким растениям. Однако благодаря аэренхиме и пневматофору они успешно заселяют субстраты, на которых другие организмы не могут расти.

Источник: http://obuchonok.ru/node/3624

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.

    ×
    Рекомендуем посмотреть