Электрический ток в газах

  • Валлерштейн Галина Георгиевна, учитель физики

Разделы: Физика, Конкурс «Презентация к уроку»

Презентация к уроку

Загрузить презентацию (271,1 кБ)

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цели урока:

  • создавать условия для формирования познавательного интереса, активности учащихся;
  • объяснение нового материала по теме «электрический ток в газах»;
  • способствовать развитию конвергентного мышления;
  • способствовать эстетическому воспитанию учащихся;
  • формирование коммуникационного общения;

Оборудование: интерактивный комплекс SMART Board Notebook.

Метод ведения урока: в форме беседы.

План урока:

  1. Организация класса
  2. Фронтальный опрос
  3. Изучение нового материала
  4. Закрепление
  5. Закрепление домашнее задание

Цель урока – усвоение нового материала по теме «электрический ток в газах»

Ход урока

1 слайд – заголовок

2 слайд – В обычных условиях газы состоят из нейтральных атомов и молекул и являются диэлектриками.

3, 4 слайд – Распад атомов на положительные ионы и электроны называется ионизацией, обратный процесс – рекомбинацией.

5 слайд – В газах электронно-ионная проводимость.

6 слайд – Протекание тока через газ называется газовым разрядом.

7 слайд – Электрическим током в газах называется направленное движение положительных ионов к катоду, отрицательных ионов и электронов к аноду.

8 слайд – Самостоятельный и несамостоятельный разряды: Газовый заряд, протекающий под действием ионизатора, называется несамостоятельным, а без ионизатора ― самостоятельным.

9 слайд – Вольт-амперная характеристика тока в газах

10 слайд – Условие ионизации электронным ударом, где l – длина свободного пробега

11 слайд – Типы самостоятельных разрядов

  1. Тлеющий разряд
  2. Искровой разряд (молния)
  3. Коронный разряд
  4. Дуговой разряд

12 слайд – Электрический разряд: самостоятельный и несамостоятельный

13 слайд – Виды самостоятельных разрядов

РазрядУсловия возникновенияПрименение
ТлеющийНизкое давление (доли мм. рт. ст.), высокая напряженность,ЕИонные и электронные рентгеновские трубки, газоразрядные трубки, газовые лазеры
ДуговойТермоэлектронная эмиссия тока с поверхности катода, большая сила тока (10-100А при малой Е)Прожекторы, сварка и резка металла, электропечи для плавки металла.
КоронныйАтмосферное давление + сильно неоднородное эл. поле.Электроочистительные фильтры газовых смесей.
ИскровойВысокое напряжение при атмосферном давлении имеет вид светящегося каналаМолния. Разряд конденсатора искры при электризации трущихся поверхностей.

14 слайд – Тлеющий разряд

  • Тле́ющий разря́д – один из видов стационарного самостоятельного электрического разряда в газах. Формируется, как правило, при низком давлении газа и малом токе. При увеличении проходящего тока превращается в дуговой разряд.
  • В отличие от нестационарных (импульсных) электрических разрядов в газах, основные характеристики тлеющего разряда остаются относительно стабильными во времени.
  • Типичным примером тлеющего разряда, знакомым большинству людей, является свечение неоновой лампы и ламп “дневного света”
  • Одно из важнейших применений тлеющего разряда в промышленности и военной сфере – газовые лазеры

15 слайд – Дуговой разряд

  • Электрическая дуга (Вольтова дуга, Дуговой разряд) – физическое явление, один из видов электрического разряда в газе.
  • Впервые была описана в 1802 году русским учёным В. В. Петровым. Электрическая дуга является частным случаем четвёртой формы состояния вещества – плазмы – и состоит из ионизированного, электрически квазинейтрального газа. Присутствие свободных электрических зарядов обеспечивает проводимость электрической дуги.
  • При эксплуатации высоковольтных электроустановок, в которых неизбежно появление электрической дуги, борьба с электрической дугой осуществляется при помощи электромагнитных катушек, совмещённых с дугогасительными камерами. Среди других способов известны использование вакуумных и масляных выключателей, а также методы отвода тока на временную нагрузку, самостоятельно разрывающую электрическую цепь.

Электрическая дуга используется при электросварке металлов, для выплавки стали (дуговая сталеплавильная печь) и в освещении (в дуговых лампах).

16 слайд – Коронный разряд

  • Коро́нный разря́д − это характерная форма самостоятельного газового разряда, возникающего в резко неоднородных полях. Главной особенностью этого разряда является то, что ионизационные процессы электронами происходят не по всей длине промежутка, а только в небольшой его части вблизи электрода с малым радиусом кривизны (так называемого коронирующего электрода). Эта зона характеризуется значительно более высокими значениями напряженности поля по сравнению со средними значениями для всего промежутка.
  • На линиях электропередачи возникновение коронного разряда нежелательно, так как вызывает значительные потери передаваемой энергии. С целью сокращения потерь на общую корону применяется расщепление проводов ЛЭП на 2, 3, 5 или 8 составляющих, в зависимости от номинального напряжения линии (для уменьшения тока в проводнике). Составляющие располагаются в углах правильного многоугольника (или на диаметре окружности, в случае расщепления на 2 составляющих), образуемого специальной распоркой.
  • В естественных условиях коронный разряд может возникать на верхушках деревьев, мачтах – т. н. огни святого Эльма.

Коронный разряд применяется для очистки газов от пыли и сопутствующих загрязнений (электростатический фильтр), для диагностики состояния конструкций (позволяет обнаруживать трещины в изделиях).

17 слайд – Искровой разряд

  • Искрово́й разря́д (искра электрическая) – нестационарная форма электрического разряда, происходящая в газах. Такой разряд возникает обычно при давлениях порядка атмосферного и сопровождается характерным звуковым эффектом – «треском» искры. Температура в главном канале искрового разряда может достигать 10 000 К. В природе искровые разряды часто возникают в виде молний. Расстояние «пробиваемое» искрой в воздухе зависит от напряжения и считается равным 10 кВ на 1 сантиметр.
  • Искровой разряд обычно происходит, если мощность источника энергии недостаточна для поддержания стационарного дугового разряда или тлеющего разряда.
  • Искровой разряд представляет собой пучок ярких, быстро исчезающих или сменяющих друг друга нитевидных, часто сильно разветвленных полосок – искровых каналов. Эти каналы заполнены плазмой, в состав которой в мощном искровом разряде входят не только ионы исходного газа, но и ионы вещества электродов, интенсивно испаряющегося под действием разряда.

18 слайд – Плазма – четвертое состояние вещества

19 слайд – Плазма – частично или полностью ионизированный газ, в котором плотности положительных и отрицательных зарядов практически одинаковы.

20, 21 слайд – Степень ионизации плазмы

  • Слабо ионизованной плазмой в природных условиях являются верхние слои атмосферы
  • Полностью ионизованная плазма, которая образуется при высокой температуре – солнце

22 слайд – Плазма во вселенной и вокруг Земли

В состоянии плазмы находится подавляющая (около 99%) часть вещества Вселенной – звезды, галактические туманности и межзвездная среда.

23 слайд – Плазма во вселенной и вокруг Земли

Около Земли плазма существует в космосе в виде солнечного ветра, заполняет магнитосферу Земли, образуя радиационные пояса Земли и ионосферу.

24 слайд – Плазма в нашей жизни

  • Плазменный телевизор
  • Плазменная лампа

15.03.2013

Источник: https://xn--i1abbnckbmcl9fb.xn--p1ai/%D1%81%D1%82%D0%B0%D1%82%D1%8C%D0%B8/632469/

Электрический ток в газах — материалы для подготовки к ЕГЭ по Физике

Электрический ток в газах

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: носители свободных электрических зарядов в газах

При обычных условиях газы состоят из электрически нейтральных атомов или молекул; свободных зарядов в газах почти нет. Поэтому газы являются диэлектриками — электрический ток через них не проходит.

Мы сказали «почти нет», потому что на самом деле газах и, в частности, в воздухе всегда присутствует некоторое количество свободных заряженных частиц.

Они появляются в результате ионизирующего воздействия излучений радиоактивных веществ, входящих в состав земной коры, ультрафиолетового и рентгеновского излучений Солнца, а также космических лучей — потоков частиц высокой энергии, проникающих в атмосферу Земли из космического пространства.

Впоследствии мы вернёмся к этому факту и обсудим его важность, а сейчас заметим лишь, что в обычных условиях проводимость газов, вызванная «естественным» количеством свободных зарядов, пренебрежимо мала, и её можно не принимать во внимание.

На изолирующих свойствах воздушного промежутка основано действие переключателей в электрических цепях (рис. 1). Например, небольшого воздушного зазора в выключателе света оказывается достаточно, чтобы разомкнуть электрическую цепь в вашей комнате.

Рис. 1. Ключ

Можно, однако, создать такие условия, при которых электрический ток в газовом промежутке появится. Давайте рассмотрим следующий опыт.

Зарядим пластины воздушного конденсатора и подсоединим их к чувствительному гальванометру (рис. 2, слева). При комнатной температуре и не слишком влажном воздухе гальванометр не покажет заметного тока: наш воздушный промежуток, как мы и говорили, не является проводником электричества.

Рис. 2. Возникновение тока в воздухе

Теперь внесём в зазор между пластинами конденсатора пламя горелки или свечи (рис. 2, справа). Ток появляется! Почему?

Свободные заряды в газе

Возникновение электрического тока между пластинами кондесатора означает, что в воздухе под воздействием пламени появились свободные заряды. Какие именно?

Опыт показывает, что электрический ток в газах является упорядоченным движением заряженных частиц трёх видов. Это электроны, положительные ионы и отрицательные ионы.

Давайте разберёмся, каким образом эти заряды могут появляться в газе.

При увеличении температуры газа тепловые колебания его частиц — молекул или атомов — становятся всё интенсивнее. Удары частиц друг о друга достигают такой силы, что начинается ионизация — распад нейтральных частиц на электроны и положительные ионы (рис. 3).

Рис. 3. Ионизация

Степенью ионизации называется отношение числа распавшихся частиц газа к общему исходному числу частиц. Например, если степень ионизации равна , то это означает, что исходных частиц газа распалось на положительные ионы и электроны.

Степень ионизации газа зависит от температуры и резко возрастает с её увеличением. У водорода, например, при температуре ниже степень ионизации не превосходит , а при температуре выше степень ионизации близка к (то есть водород почти полностью ионизирован (частично или полностью ионизированный газ называется плазмой)).

Помимо высокой температуры имеются и другие факторы, вызывающие ионизацию газа.

Мы их уже вскользь упоминали: это радиоактивные излучения, ультрафиолетовые, рентгеновские и гамма-лучи, космические частицы. Всякий такой фактор, являющийся причиной ионизации газа, называется ионизатором.

Таким образом, ионизация происходит не сама по себе, а под воздействием ионизатора.

Одновременно идёт и обратный процесс — рекомбинация, то есть воссоединение электрона и положительного иона в нейтральную частицу (рис. 4).

Рис. 4. Рекомбинация

Причина рекомбинации проста: это кулоновское притяжение противоположно заряженных электронов и ионов. Устремляясь навстречу друг другу под действием электрических сил, они встречаются и получают возможность образовать нейтральный атом (или молекулу — в зависимости от сорта газа).

При неизменной интенсивности действия ионизатора устанавливается динамическое равновесие: среднее количество частиц, распадающихся в единицу времени, равно среднему количеству рекомбинирующих частиц (иными словами, скорость ионизации равна скорости рекомбинации).

Если действие ионизатора усилить (например, повысить температуру), то динамическое равновесие сместится в сторону ионизации, и концентрация заряженных частиц в газе возрастёт.

Наоборот, если выключить ионизатор, то рекомбинация начнёт преобладать, и свободные заряды постепенно исчезнут полностью.

Итак, положительные ионы и электроны появляются в газе в результате ионизации. Откуда же берётся третий сорт зарядов — отрицательные ионы? Очень просто: электрон может налететь на нейтральный атом и присоединиться к нему! Этот процесс показан на рис. 5.

Рис. 5. Появление отрицательного иона

Образованные таким образом отрицательные ионы будут участвовать в создании тока наряду с положительными ионами и электронами.

Несамостоятельный разряд

Если внешнего электрического поля нет, то свободные заряды совершают хаотическое тепловое движение наряду с нейтральными частицами газа. Но при наложении электрического поля начинается упорядоченное движение заряженных частиц — электрический ток в газе.

Рис. 6. Несамостоятельный разряд

На рис. 6 мы видим три сорта заряженных частиц, возникающих в газовом промежутке под действием ионизатора: положительные ионы, отрицательные ионы и электроны. Электрический ток в газе образуется в результате встречного движения заряженных частиц: положительных ионов — к отрицательному электроду (катоду), электронов и отрицательных ионов — к положительному электроду (аноду).

Электроны, попадая на положительный анод, направляются по цепи к «плюсу» источника тока. Отрицательные ионы отдают аноду лишний электрон и, став нейтральными частицами, возвращаются в обратно газ; отданный же аноду электрон также устремляется к «плюсу» источника.

Положительные ионы, приходя на катод, забирают оттуда электроны; возникший дефицит электронов на катоде немедленно компенсируется их доставкой туда с «минуса» источника. В результате этих процессов возникает упорядоченное движение электронов во внешней цепи.

Это и есть электрический ток, регистрируемый гальванометром.

Описанный процесс, изображённый на рис. 6, называется несамостоятельным разрядом в газе. Почему несамостоятельным? Потому для его поддержания необходимо постоянное действие ионизатора. Уберём ионизатор — и ток прекратится, поскольку исчезнет механизм, обеспечивающий появление свободных зарядов в газовом промежутке. Пространство между анодом и катодом снова станет изолятором.

Вольт-амперная характеристика газового разряда

Зависимость силы тока через газовый промежуток от напряжения между анодом и катодом (так называемая вольт-амперная характеристика газового разряда) показана на рис. 7.

Рис. 7. Вольт-амперная характеристика газового разряда

При нулевом напряжении сила тока, естественно, равна нулю: заряженные частицы совершают лишь тепловое движение, упорядоченного их движения между электродами нет.

При небольшом напряжении сила тока также мала. Дело в том, что не всем заряженным частицам суждено добраться до электродов: часть положительных ионов и электронов в процессе своего движения находят друг друга и рекомбинируют.

С повышением напряжения свободные заряды развивают всё большую скорость, и тем меньше шансов у положительного иона и электрона встретиться и рекомбинировать. Поэтому всё большая часть заряженных частиц достигает электродов, и сила тока возрастает (участок ).

При определённой величине напряжения (точка ) скорость движения зарядов становится настолько большой, что рекомбинация вообще не успевает происходить.

С этого момента все заряженные частицы, образованные под действием ионизатора, достигают электродов, и ток достигает насыщения — а именно, сила тока перестаёт меняться с увеличением напряжения.

Так будет происходить вплоть до некоторой точки .

Самостоятельный разряд

После прохождения точки сила тока при увеличении напряжения резко возрастает — начинается самостоятельный разряд. Сейчас мы разберёмся, что это такое.

Заряженные частицы газа движутся от столкновения к столкновению; в промежутках между столкновениями они разгоняются электрическим полем, увеличивая свою кинетическую энергию.

И вот, когда напряжение становится достаточно большим (та самая точка ), электроны за время свободного пробега достигают таких энергий, что при соударении с нейтральными атомами ионизируют их! (С помощью законов сохранения импульса и энергии можно показать, что именно электроны (а не ионы), ускоряемые электрическим полем, обладают максимальной способностью ионизировать атомы.)

Начинается так называемая ионизация электронным ударом. Электроны, выбитые из ионизированных атомов, также разгоняются электрическим полем и налетают на новые атомы, ионизируя теперь уже их и порождая новые электроны. В результате возникающей электронной лавины число ионизированных атомов стремительно возрастает, вследствие чего быстро возрастает и сила тока.

Количество свободных зарядов становится таким большим, что необходимость во внешнем ионизаторе отпадает. Его можно попросту убрать. Свободные заряженные частицы теперь порождаются в результате внутренних процессов, происходящих в газе — вот почему разряд называется самостоятельным.

Если газовый промежуток находится под высоким напряжением, то для самостоятельного разряда не нужен никакой ионизатор. Достаточно в газе оказаться лишь одному свободному электрону, и начнётся описанная выше электронная лавина. А хотя бы один свободный электрон всегда найдётся!

Вспомним ещё раз, что в газе даже при обычных условиях имеется некоторое «естественное» количество свободных зарядов, обусловленное ионизирующим радиоактивным излучением земной коры, высокочастотным излучением Солнца, космическими лучами.

Мы видели, что при малых напряжениях проводимость газа, вызванная этими свободными зарядами, ничтожно мала, но теперь — при высоком напряжении — они-то и породят лавину новых частиц, дав начало самостоятельному разряду.

Произойдёт, как говорят, пробой газового промежутка.

Напряжённость поля, необходимая для пробоя сухого воздуха, равна примерно кВ/см. Иными словами, чтобы между электродами, разделёнными сантиметром воздуха, проскочила искра, на них нужно подать напряжение киловольт. Вообразите же, какое напряжение необходимо для пробоя нескольких километров воздуха! А ведь именно такие пробои происходят во время грозы — это прекрасно известные вам молнии.

Источник: https://ege-study.ru/ru/ege/materialy/fizika/elektricheskij-tok-v-gazax/

Электрический ток в газах. Ионизация газов

Электрический ток в газах

Поток электричества, то есть электрический ток, может существовать не только в металлах, электролитах и расплавах, он может быть также и в газах.

Что из себя представляет газ? Это одно из фазовых состояний вещества, когда молекулы газа свободны и хаотичны в своём движении, когда объем вещества можно сжать, когда вещество подвижно и т.д.

Газ состоит из молекул, а молекулы в свою очередь обычно состоят из атомов. В итоге каждая такая молекула газа представляет из себя электрический диполь.

Вот такое собрание электрических диполей в виде молекул газа не обязано в своём составе иметь ни свободные электроны, ни свободные ионы, однако всё-таки некоторое их незначительное количество имеется. Газ является в своём обычном состоянии диэлектриком, то есть он представляет из себя изолятор, изолирует лучше чем проводит ток.

Мы с вами дышим атмосферным воздухом, который представляет из себя смесь газов, большая часть которого молекулы азота N2 (78,09 % объёма). Водяной пар, как впрочем и любой другой также являются газами. Газы нас окружают повсюду. Каждое вещество при определённом давлении и температуре находится в устойчивой газовой фазе.

В технических устройствах и приборах специально создаются условия отличные от нормальных, для существования вещества в газовой фазе. Нормальные условия — это обычное атмосферное давление и температура от 0° до 20°C, в зависимости от технической сферы применения.

В люминесцентных лампах находится газ, но его условия отличаются от нормальных, там разряженный газ, так как давление ниже атмосферного. Баллон с пропаном или кислородом содержит в себе «газ», но он сжиженный, в сжатом виде, давление там выше одной атмосферы, оно может быть 16-200 атмосфер.

Всё, что выше одной атмосферы — это сжиженный газ, а всё что ниже — разряженный газ. Это искусственно создаваемые условия техническими средствами.

В зависимости от температуры, давления в объёме газа и от свойств вещества газа — он будет иметь различные свойства по проводимости электричества, а также по условиям ионизации.

Газ в электрическом поле

Точно также как и любой диэлектрик, газ реагирует на электрическое поле.

Молекулы газа, находясь в свободном движении, со скоростями большими чем у ионов в растворах и расплавах, можно сказать, что они более независимы, чем когда были в состоянии жидкости.

Наличие электрического поля приводит к дипольной ориентации молекул газа (отдельных диполей). Они начинают поворачиваться так, чтобы скомпенсировать действие поля. Происходит это не сразу.

Потенциальная энергия поля будет преобразовываться в кинетическую энергию молекул газа. При достаточной напряжённости электрического поля будет происходить ионизация молекул газа. Электрический диполь в виде молекулы разорвётся на атомы и одному из них будет недоставать электрона.

Образуется положительный ион — катион, который устремится к катоду источника поля. Вполне возможно, что на своём пути он захватит свободный электрон, но если таких разорванных диполей станет много, то и процесс разрыва молекул на атомы станет лавинообразным.

В итоге проводимость газа значительно улучшится и через газ будет проходить больше электричества, сила тока будет стремительно возрастать. Графически этот процесс хорошо иллюстрируется вольт-амперной характеристикой (ВАХ).

В конечном итоге в газе происходит разряд, который бывает разных видов, но об этом сказано ниже.

Ионизация газов

Прежде всего нас интересует ионизация газов под действием электрического поля, но при этом не стоит забывать о том, что в газах возможна термическая ионизация под действием высокой температуры (теплового излучения).

Немного о процессе ионизации сказано выше. Каждый газ имеет своё пороговое значение напряжённости электрического поля, при котором происходит ионизация.

Дело в том, что для того, чтобы разорвать диполь, необходимо вырвать электрическим полем хотя бы один электрон.

Тогда диполь становится неустойчивым и распадается на атомы, а так как им недостаёт электронов, то соответственно получаются катионы (+q).

Положительные ионы начинают двигаться под действием кулоновских сил в сторону катода, а освободившиеся электроны в сторону анода. Образуется электрический поток, то есть ток.

Так как энергия катионов в газе и вырванных уже свободных электронов высокая, происходят взаимные столкновения вновь образованных свободных носителей зарядов (катионы и электроны) со связанными в диполи атомами молекул газа.

Это в свою очередь вызывает дальнейшую ещё большую ионизацию, новая партия опять атакует оставшиеся диполи, что приводит к появлению ещё большей партии свободных зарядов обоих типов.

Этот процесс растёт в геометрически и называется геометрической прогрессией, также именуют его лавинообразным и цепной реакцией.

Имеется ли предел такой лавине? Прежде всего он ограничен количеством участвующего газа, который может находится в некотором закрытом объёме пространства (запаянная колба).

Следующее препятствие — это мощность источника электрического поля. Кроме мощности лавинообразная ионизация может быть ограничена разностью потенциалов источника тока.

Если обычный газ, не подвергнутый ионизации, имеет лишь незначительное количество свободных носителей зарядов, а источник электрического тока имеет недостаточный потенциал для лавинообразной ионизации, тогда газ ведёт себя как обычный диэлектрик и проявляет изолирующие свойства больше, чем проводящие. Электрический ток в газе в этом случае имеется, но он незначительный.

Когда обычный газ подвергается ионизации любым из способов, то его проводящие свойства значительно улучшаются. В газе происходит разряд. Вполне возможно создать такие условия, что этот разряд будет существовать стабильно, а значит мы получим некоторый устойчивый ток в газе.

Газовые разряды

В зависимости от условий, в которых находится газ, а также от характеристик источника тока, в газу могут происходит разряды разных типов, каждый из которых имеет свои особенности.

Дуговой разряд: представляет собой электрический пробой газа, которой в дальнейшем становится постоянным плазменным разрядом — дугой, образуется электрическая дуга. Дуговой разряд характеризуется более низким напряжением, чем тлеющий разряд. Поддерживается в основном за счёт термоэлектронной эмиссии, когда из электродов высвобождаются электроны.

Старое название такой дуги «вольтова дуга». Отличительной особенностью такой дуги является высокая плотность тока и низкое напряжение, которое ограничено источником тока. Для того, чтобы создать такую дугу, электроды сближаются, происходит пробой, а затем они раздвигаются. Дуговой разряд используется в сварке, в плазменной резке, в электроэрозионной обработке.

Тлеющий разряд: представляет собой ток в ионизированном газе, а точнее сказать в низкотемпературной плазме. Тлеющий разряд образуется при прохождении тока через разряженный газ. Как только напряжение превосходит определённое значение, газ в колбе ионизирует и происходит свечение. Это уже по сути электрический ток не столько в газе, сколько в плазме.

Цвет свечения газа (плазмы) зависит от вещества газа. Каждый газ излучает свой спектр видимого света. На этом основано использование яркой неоновой рекламы. Достаточно несколько сотен вольт напряжения источника, чтобы ионизировать газ и вызвать в нем тлеющий разряд. В аналитической химии, свойство газа излучать свой определённый спектр света используется для определения неизвестного состава газа.

Это метод спектроскопии.

Искровой разряд: происходит при обычных условиях, при обычном атмосферном давлении, точно также как и тлеющий разряд происходит в следствие ионизации газа, но при высоком напряжении, в отличии от дугового разряда, где в первую очередь важна высокая плотность тока. Искровой разряд сопровождается характерным треском.

Поджиг искрового разряда происходит как результат пробоя диэлектрика — газа. Например, такой разряд используется в свечах зажигания двигателей внутреннего сгорания.

Для электрического пробоя в сухом воздухе необходима разность потенциалов из расчёта 3 кВ (3000 Вольт) на 1 мм воздушного зазора, соответственно для пробоя промежутка в 50 мм потребуется напряжение источника в 150 кВ.

Коронный разряд: происходит в сильном электрическом поле с высокой напряжённостью, достаточной, чтобы вызвать ионизацию газа (или жидкости). Электрическое поле при этом бывает не однородным, где-то напряжённость значительно больше.

Образуется градиент (различие) потенциалов поля и там где потенциал больше, ионизация газа идёт сильнее, интенсивнее, затем поток ионов доходит до другой части поля, тем самым образуя поток электричества.

В результате образуется коронный газовый разряд причудливых форм, в зависимости от геометрии проводников — источников напряжённости поля.

Коронный разряд можно увидеть вблизи изоляторов высоковольтных линий, также он применяется в быту и промышленности, например в ксерокопировании, воздушные ионизаторы, в системах кондиционирования воздуха, производство озона.

Электрический ток в газах используется в настоящее время очень широко.

Практически в каждом доме есть люминесцентные лампы, в которых происходит тлеющий разряд, на производствах, в гаражах, используется электрическая сварка с помощью дугового разряда, двигатели автомобилей работают благодаря искровому разряду, некоторые применяют ионизаторы и имеют лазерные принтеры, где используется коронный разряд.

Дата: 16.05.2015

© Valentin Grigoryev (Валентин Григорьев)

Источник: http://electricity-automation.com/page/elektricheskiy-tok-v-gazah-ionizatsiya-gazov

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.