Физические свойства водорода

Содержание

Водород — характеристика, физические и химические свойства

Физические свойства водорода

1001student.ru > Химия > Водород — характеристика, физические и химические свойства

Водород был открыт во второй половине 18 столетия английским ученым в области физики и химии Г. Кавендишем. Он сумел выделить вещество в чистом состоянии, занялся его изучением и описал свойства.

Такова история открытия водорода. В ходе экспериментов исследователь определил, что это горючий газ, сгорание которого в воздухе дает воду. Это привело к определению качественного состава воды.

  • Что такое водород
  • Характеристика водорода
  • Физические свойства
  • Химические свойства
  • Области применения
  • Получение в промышленности
  • Получение в лаборатории
  • Нахождение водорода в природе
  • Интересные факты о водороде

Что такое водород

О водороде, как о простом веществе, впервые заявил французский химик А. Лавуазье в 1784 году, поскольку определил, что в состав его молекулы входят атомы одного вида.

Название химического элемента по-латыни звучит как hydrogenium (читается «гидрогениум»), что означает «воду рождающий». Название отсылает к реакции горения, в результате которой образуется вода.

Характеристика водорода

Обозначение водорода Н. Менделеев присвоил этому химическому элементу первый порядковый номер, разместив его в главной подгруппе первой группы и первом периоде и условно в главной подгруппе седьмой  группы.

Атомарный вес (атомная масса) водорода составляет 1,00797. Молекулярная масса H2 равна 2 а. е. Молярная масса численно равна ей.

Представлен тремя изотопами, имеющими специальное название: самый распространенный протий (H), тяжелый дейтерий (D), радиоактивный тритий (Т).

Это первый элемент, который может быть полностью разделен на изотопы простым способом. Основывается он на высокой разнице масс изотопов. Впервые процесс был осуществлен в 1933 году. Объясняется это тем, что лишь в 1932 году был выявлен изотоп с массой 2.

Физические свойства

В нормальных условиях простое вещество водород в виде двухатомных молекул является газом, без цвета, у которого отсутствует вкус и запах. Мало растворим в воде и других растворителях.

Температура  кристаллизации — 259,2оC, температура кипения  — 252,8оC.  Диаметр молекул водорода настолько мал, что они обладают способностью к медленной диффузии через ряд материалов (резина, стекло, металлы). Это свойство находит применение, когда требуется очистить водород от газообразных примесей. При н. у. водород имеет плотность, равную 0,09 кг/м3.

Возможно ли превращение водорода в металл по аналогии с элементами, расположенными в первой группе? Учеными установлено, что водород  в условиях, когда давление приближается к 2 млн. атмосфер, начинает поглощать инфракрасные лучи, что свидетельствует о поляризации молекул вещества. Возможно, при еще более высоких давлениях, водород станет металлом.

: есть предположение, что на планетах-гигантах, Юпитере и Сатурне, водород находится в виде металла. Предполагается, что в составе земного ядра тоже присутствует металлический твердый водород, благодаря сверхвысокому давлению, создаваемому земной мантией.

Химические свойства

В химическое взаимодействие с водородом вступают как простые, так и сложные вещества. Но малую активность водорода требуется увеличить созданием соответствующих условий – повышением температуры, применением катализаторов и др.

При нагревании в реакцию с водородом вступают такие простые вещества, как кислород (O2), хлор(Cl2), азот (N2), сера(S).

Если поджечь чистый водород на конце газоотводной трубки в воздухе, он будет гореть ровно, но еле заметно. Если же поместить газоотводную трубку в атмосферу чистого кислорода, то горение продолжится с образованием на стенках сосуда капель воды, как результат реакции:

Горение воды сопровождается выделением большого количества теплоты. Это экзотермическая реакция соединения, в процессе которой водород окисляется кислородом с образованием оксида H2O. Это также и окислительно-восстановительная реакция, в которой водород окисляется, а кислород восстанавливается.

Аналогично происходит реакция с Cl2 с образованием хлороводорода.

Для осуществления взаимодействия азота с водородом требуется высокая температура и повышенное давление, а также присутствие катализатора. Результатом является аммиак.

В результате реакции с серой образуется сероводород, распознавание которого облегчает характерный запах тухлых яиц.

Степень окисления водорода в этих реакциях +1, а в гидридах, описываемых ниже, – 1.

При реакции с некоторыми металлами образуются гидриды, например, гидрид натрия – NaH. Некоторые из этих сложных соединений используются в качестве горючего для ракет, а также в термоядерной энергетике.

Водород реагирует и с веществами из категории сложных. Например, с оксидом меди (II), формула CuO. Для осуществления реакции, водород меди пропускается над нагретым порошкообразным оксидом меди (II). В ходе взаимодействия реагент меняет свой цвет и становится красно-коричневым, а на холодных стенках пробирки оседают капельки воды.

Водород в ходе реакции окисляется, образуя воду, а медь восстанавливается из оксида до простого вещества (Cu).

Области применения

Водород имеет большое значение для человека и находит применение в самых разных сферах:

  1. В химическом производстве – это сырье, в других отраслях – топливо. Не обходятся без водорода и предприятия нефтехимии и нефтепереработки.
  2. В электроэнергетике это простое вещество выполняет функцию охлаждающего агента.
  3. В черной и цветной металлургии водороду отводится роль восстановителя.
  4. Сего помощью создают инертную среду при упаковке продуктов.
  5. Фармацевтическая промышленность — пользуется водородом как реагентом в производстве перекиси водорода.
  6. Этим легким газом наполняют метеорологические зонды.
  7. Известен этот элемент и в качестве восстановителя топлива для ракетных двигателей.

Ученые единодушно пророчат водородному топливу пальму первенства в энергетике.

Получение в промышленности

В промышленности водород получают методом электролиза, которому подвергают хлориды либо гидроксиды щелочных металлов, растворенные в воде. Также можно получать водород этим способом непосредственно из воды.

Используется в этих целях конверсия кокса или метана с водяным паром. Разложение метана при повышенной температуре также дает водород. Сжижение коксового газа фракционным методом тоже применяется для промышленного получения водорода.

Получение в лаборатории

В лаборатории для получения водорода используют аппарат Киппа.

В качестве реагентов выступают соляная или серная кислота и цинк. В результате реакции образуется водород.

Нахождение водорода в природе

Водород чаще других элементов встречается во Вселенной. Основную массу звезд, в том числе Солнца, и иных космических тел составляет водород.

В земной коре его всего 0,15%. Он присутствует во многих минералах, во всех органических веществах, а также в воде, покрывающей на 3/4 поверхность нашей планеты.

В верхних слоях атмосферы можно обнаружить следы водорода в чистом виде. Находят его и в ряде горючих природных газов.

Интересные факты о водороде

Газообразный водород является самым неплотным, а жидкий – самым плотным веществом на нашей планете. С помощью водорода можно изменить тембр голоса, если вдохнуть его, а на выдохе заговорить.

В основе действия самой мощной водородной бомбы лежит расщепление самого легкого атома.

Источник: https://1001student.ru/himiya/h2-vodorod.html

Что такое водород?

Физические свойства водорода

Цель сегодняшней публикации – представить неподготовленному читателю исчерпывающие сведения о том, что такое водород, каковы его физические и химические свойства, сфера применения, значение и способы получения.

Мы также проследим историю открытия этого удивительного вещества, изложив теорию по возможности кратко и без использования излишне заумной терминологии.

Что такое водород: общие сведения

Водород – это один из самых распространенных в природе химических элементов. Доля водорода в массе Солнца составляет примерно половину. Во Вселенной же доля атомов водорода приближается к 90 %, являясь основой межзвездного газа и звезд.

Водород присутствует в подавляющем большинстве органических веществ и живых клеток, в которых на его долю приходится почти две трети атомов.

Фото 1. Водород считается одним из самых распространенных элементов в природе

В периодической системе элементов Менделеева водород занимает почетную первую позицию с атомным весом, равным единице.

Название «водород» (в латинском варианте – Hydrogenium) ведет происхождение от двух древнегреческих слов: ὕδωρ — «вода» и γεννάω — «рождаю» (буквально – «рождающий воду) и впервые было предложено в 1824 г. русским химиком Михаилом Соловьевым.

Водород является одним из водообразующих (наряду с кислородом) элементов (химическая формула воды H2O).

По физическим свойствам водород характеризуется как бесцветный газ (легче воздуха). При смешении с кислородом или воздухом крайне взрывоопасен и горюч.

Способен растворяться в некоторых металлах (титане, железе, платине, палладии, никеле) и в этаноле, однако очень плохо растворим в серебре.

Молекула водорода состоит из двух атомов и обозначается H2. Водород имеет несколько изотопов: протий (H), дейтерий (D) и тритий (T).

История открытия водорода

Еще в первой половине XVI века при проведении алхимических опытов, смешивая металлы с кислотами, Парацельс заметил доселе неизвестный горючий газ, который отделить от воздуха он так и не смог.

Спустя почти полтора столетия – в конце XVII века – французскому ученому Лемери удалось-таки отделить водород (еще не зная, что это именно водород) от воздуха и доказать его горючесть.

Фото 2. Генри Кавендиш — первооткрыватель водорода

Химические опыты в середине XVIII века позволили Михаилу Ломоносову выявить процесс выделения некоего газа в результате некоторых химических реакций, не являющегося, однако, флогистоном.

Настоящий прорыв в исследовании горючего газа удалось совершить английскому химику Генри Кавендишу, которому и приписывается открытие водорода (1766).

Этот газ Кавендиш называл «горючим воздухом». Им же проведена реакция сжигания этого вещества, в результате которой получалась вода.

В 1783 г. французским химикам во главе с Антуаном Лавуазье был осуществлен синтез воды, а впоследствии – разложение воды с выделением «горючего воздуха».

Эти исследования окончательно доказали присутствие водорода в составе воды. Именно Лавуазье предложил именовать новый газ Hydrogenium (1801).

Полезные свойства водорода

Водород легче воздуха в четырнадцать с половиной раз.

Его же отличает и самая высокая теплопроводность среди прочих газов (белее чем в семь раз превышает теплопроводность воздуха).

В былые времена воздушные шары и дирижабли заполняли водородом. После серии катастроф в середине 1930-х, закончившихся взрывами дирижаблей, конструкторам пришлось искать водороду замену.

Теперь для подобных летательных аппаратов используется гелий, который намного дороже водорода, зато не так взрывоопасен.

Водород хорошо зарекомендовал себя в качестве компонента ракетного топлива.

Фото 3. Водород применяется для изготовления ракетного топлива

Во многих странах ведутся исследования по созданию экономичных двигателей для легковых и грузовых автомобилей на основе водорода.

Автомобили на водородном топливе значительно экологичнее своих бензиновых и дизельных собратьев.

При обычных условиях (комнатная температура и естественное атмосферное давление) водород неохотно вступает в реакции.

При нагревании смеси водорода и кислорода до 600 °C начинается реакция, завершающаяся образованием молекул воды.

Эту же реакцию можно спровоцировать с помощью электрической искры.

Реакции при участи водорода завершаются, лишь когда участвующие в реакции компоненты будут израсходованы целиком.

Температура горящего водорода достигает 2500-2800 °C.

С помощью водорода производят очистку различных типов топлива на основе нефти и нефтепродуктов.

В живой природе водород заменить нечем, так как он присутствует в любой органике (включая нефть) и во всех белковых соединениях.

Без участия водорода жизнь на Земле была бы невозможна.

Агрегатные состояния водорода

Водород способен пребывать в трех основных агрегатных состояниях:

  • газообразном;
  • жидком;
  • твердом.

Обычное состояние водорода – газ. Понижая его температуру до -252,8 °C, водород превращается в жидкость, а после температурного порога -262 °C водород становится твердым.

Фото 4. Уже несколько десятилетий вместо дешевого водорода для наполнения воздушных шаров используют дорогой гелий

Ученые предполагают, что водород способен находиться в дополнительном (четвертом) агрегатном состоянии – металлическом.

Для этого нужно всего лишь создать давление в два с половиной миллиона атмосфер.

Пока, увы, это всего лишь научная гипотеза, так как получить «металлический водород» еще никому не удавалось.

Жидкий водород – из-за своей температуры — при попадании на кожу человека способен вызвать сильное обморожение.

Водород в таблице Менделеева

В основе распределения химических элементов в периодической таблице Менделеева лежит их атомный вес, рассчитанный относительно атомного веса водорода.

Фото 5. В таблице Менделеева водороду отведена ячейка с порядковым номером 1

Правильность такого подхода долгие годы никто не мог ни опровергнуть, ни подтвердить.

С возникновением квантовой физики в начале XX века и, в частности, появлением знаменитых постулатов Нильса Бора, объясняющих с позиций квантовой механики строение атома, удалось доказать справедливость гипотезы Менделеева.

Верно и обратное: именно соответствие постулатов Нильса Бора периодическому закону, лежащему в основе таблицы Менделеева, и стало самым веским доводом в пользу признания их истинности.

Участие водорода в термоядерной реакции

Изотопы водорода дейтерий и тритий являются источниками невероятно мощной энергии, высвобождающейся в процессе термоядерной реакции.

Фото 6. Термоядерный взрыв без водорода был бы невозможен

Такая реакция возможна при температуре не ниже 1060 °C и протекают очень быстро – в течение нескольких секунд.

На Солнце термоядерные реакции протекают медленно.

Задача ученых – понять, почему так происходит, чтобы использовать полученные знания для создания новых – практически неисчерпаемых – источников энергии.

Что такое водород (видео):

>

Источник: https://vunderkind.info/chto-takoe-vodorod

Водород. Физические и химические свойства, получение

Физические свойства водорода

Водород H — самый распространённый элемент во Вселенной (около 75 % по массе), на Земле — девятый по распространенности. Наиболее важным природным соединением водорода является вода.Водород занимает первое место в периодической системе (Z = 1).

Он имеет простейшее строение атома: ядро атома – 1 протон, окружено электронным облаком, состоящим из 1 электрона.В одних условиях водород проявляет металлические свойства (отдает электрон), в других — неметаллические (принимает электрон).

В природе встречаются изотопы водорода:  1Н — протий (ядро состоит из одного протона), 2Н — дейтерий (D — ядро состоит из одного протона и одного нейтрона), 3Н — тритий (Т — ядро состоит из одного протона и двух нейтронов).

Простое вещество водород

Молекула водорода состоит из двух атомов, связанных  между собой ковалентной неполярной связью.
Физические свойства. Водород — бесцветный нетоксичный газ без запаха и вкуса. Молекула водорода не полярна. Поэтому силы межмолекулярного взаимодействия в газообразном водороде малы.

Это проявляется в низких температурах кипения (-252,6 0С) и плавления (-259,2 0С).
Водород легче воздуха, D (по воздуху) = 0,069;  незначительно растворяется в воде (в 100 объемах H2O растворяется 2 объема  H2).

  Поэтому водород при его получении в лаборатории можно собирать методами вытеснения воздуха или воды.

Получение водорода

В лаборатории:

1.Действие разбавленных кислот на металлы:
Zn +2HCl → ZnCl2 +H2↑

2.Взаимодействие щелочных и щ-з металлов с водой:
Ca +2H2O → Ca(OH)2 +H2↑

3.Гидролиз гидридов: гидриды металлов легко разлагаются водой с образованием соответствующей щелочи и водорода:
NaH +H2O → NaOH +H2↑
СаH2 + 2Н2О = Са(ОН)2 + 2Н2↑

4.Действие щелочей на цинк  или алюминий или кремний:
2Al +2NaOH +6H2O → 2Na[Al(OH)4] +3H2↑
Zn +2KOH +2H2O → K2[Zn(OH)4] +H2↑
Si + 2NaOH + H2O → Na2SiO3 + 2H2

5. Электролиз воды. Для увеличения электрической проводимости воды к ней добавляют электролит, например NаОН, Н2SO4 или Na2SO4. На катоде образуется 2 объема водорода, на аноде — 1 объем кислорода.
2H2O → 2H2+О2

Промышленное получение водорода

1. Конверсия метана с водяным паром, Ni 800 °С (самый дешевый):
CH4 + H2O → CO + 3 H2   
CO + H2O → CO2 + H2

В сумме:
CH4 + 2 H2O → 4 H2 + CO2

2. Пары воды через раскаленный кокс при 1000оС:
С + H2O → CO + H2
CO +H2O → CO2 + H2

Образующийся оксид углерода (IV) поглощается водой, этим способом получают 50 % промышленного водорода.

3. Нагреванием метана до 350°С в присутствии железного или нике­левого катализатора:
СH4 → С + 2Н2↑

4. Электролизом водных растворов KCl или NaCl, как побочный продукт:
2Н2О + 2NaCl→ Cl2↑ + H2↑ + 2NaOH

Химические свойства водорода

  • В соединениях водород всегда одновалентен. Для него характерна степень окисления +1, но в гидридах металлов она равна -1.
  • Молекула водорода состоит из двух атомов. Возникновение связи между ними объясняется образованием обобщен­ной пары электронов Н:Н или Н2
  • Благодаря этому обобщению электронов молекула Н2 более энергети­чески устойчива, чем его отдельные атомы. Чтобы разорвать в 1 моль водорода молекулы на атомы, необходимо затратить энергию 436 кДж: Н2 = 2Н, ∆H° = 436 кДж/моль
  • Этим объясняется сравнительно небольшая активность молекулярного водорода при обычной температуре.
  • Со многими неметаллами водород образует газообразные соедине­ния типа RН4, RН3, RН2, RН.

1) С галогенами  образует галогеноводороды:
Н2 + Cl2 → 2НСl.
При этом с фтором — взрывается, с хлором и бромом реагирует лишь при освещении или нагревании, а с йодом только при нагревании.

2) С кислородом:
2Н2 + О2 → 2Н2О
с выделением тепла. При обычных температурах реакция протекает медленно, выше 550°С — со взрывом. Смесь 2 объемов Н2 и 1 объема О2 называется гремучим газом.

3) При нагревании энергично реагирует с серойь(значительно труднее с селеном и теллуром):
Н2 + S → H2S (сероводород),

4) С азотом  с образованием аммиака лишь на катализаторе и при повышенных температурах и давлениях:
ЗН2 + N2 → 2NН3

5) С углеродом при высоких температурах:
2Н2 + С → СН4 (метан)

6) С  щелочными и щелочноземельными металлами  образует гидриды (водород – окислитель):
Н2 + 2Li → 2LiH
в гидридах металлов ион водорода заряжен отрицательно (степень окисления -1), то есть гидрид Na+H— построен подобно хлориду Na+Cl—

Со сложными веществами:

7) С оксидами металлов (используется для восстановления металлов):
CuO + H2 → Cu + H2O
Fe3O4 + 4H2 → 3Fe + 4Н2О

8) с оксидом углерода (II):
CO + 2H2 → CH3OH
Синтез — газ (смесь водорода и угарного газа) имеет важное практическое значение, тк в зависимости от температуры, давления и катализатора образуются различные органические соединения, например НСНО, СН3ОН и другие.

9)Ненасыщенные углеводороды реагируют с водородом, переходя в насыщенные:
СnН2n + Н2 → СnН2n+2.

Источник: http://himege.ru/vodorod-fizicheskie-i-ximicheskie-svojstva-poluchenie/

Водород. Свойства, получение, применение. Историческая справка

Физические свойства водорода

стр 1

скачатьВодород. Свойства, получение, применение.

Историческая справка

Водород – первый элемент ПСХЭ Д.И. Менделеева.

Русское название водорода указывает, что он «рождает воду»; латинское «гидрогениум» означает то же самое.

Впервые выделение горючего газа при взаимодействии некоторых металлов с кислотами наблюдали Роберт Бойль и его современники в первой половине XVI века.

Но водород был открыт лишь в 1766 году английским химиком Генри Кавендишем, который установил, что при взаимодействии металлов с разбавленными кислотами выделяется некий «горючий воздух». Наблюдая горение водорода на воздухе, Кавендиш установил, что в результате появляется вода. Это было в 1782 году.

В 1783 году году французский химик Антуан-Лоран Лавуазье выделил водород путем разложения воды раскаленным железом. В 1789 году водород был выделен при разложении воды под действием электрического тока.

Распространенность в природе

Водород – главный элемент космоса. Например, Солнце на 70 % своей массы состоит из водорода. Атомов водорода во Вселенной в несколько десятков тысяч раз больше, чем всех атомов всех металлов, вместе взятых.

В земной атмосфере тоже есть немного водорода в виде простого вещества – газа состава Н2. Водород намного легче воздуха, и поэтому его находят в верхних слоях атмосферы.

Но гораздо больше на Земле связанного водорода: ведь он входит в состав воды, самого распространенного на нашей планете сложного вещества. Водород, связанный в молекулы, содержат и нефть, и природный газ, многие минералы и горные породы. Водород входит в состав всех органических веществ.

Характеристика элемента водорода.

Водород имеет двойственную природу, по этой причине в одних случаях водород помещают в подгруппу щелочных металлов, а в других – в подгруппу галогенов.

  • Электронная конфигурация 1s1. Атом водорода состоит из одного протона и одного электрона.
  • Атом водорода способен терять электрон и превращаться в катион H+, и в этом он сходен со щелочными металлами.
  • Атом водорода также может присоединять электрон, образуя при этом анион Н-, в этом отношении водород сходен с галогенами.
  • В соединениях всегда одновалентен
  • СО: +1 и -1.

Физические свойства водорода

Водород – это газ, без цвета, вкуса и запаха. В 14,5 раз легче воздуха. Мало растворим в воде. Обладает высокой теплопроводностью. При t= –253 °С – сжижается, при t= –259 °С – затвердевает.

Молекулы водорода настолько малы, что способны медленно диффундировать через многие материалы – резину, стекло, металлы, что используется при очистке водорода от других газов.

Известны 3 изотопа водорода: – протий, – дейтерий, – тритий. Основную часть природного водорода составляет протий.

Дейтерий входит в состав тяжелой воды, которой обогащены поверхностные воды океана. Тритий – радиоактивный изотоп.

Химические свойства водорода

Водород – неметалл, имеет молекулярное строение. Молекула водорода состоит из двух атомов, связанных между собой ковалентной неполярной связью. Энергия связи в молекуле водорода составляет 436 кДж/моль, что объясняет низкую химическую активность молекулярного водорода.

  1. Взаимодействие с галогенами. При обычной температуре водород реагирует лишь со фтором:

H2 + F2 = 2HF.

С хлором – только на свету, образуя хлороводород, с бромом реакция протекает менее энергично, с йодом не идет до конца даже при высоких температурах.

  1. Взаимодействие с кислородом – при нагревании, при поджигании реакция протекает со взрывом: 2H2 + O2 = 2H2O.

Водород горит в кислороде с выделением большого количества тепла. Температура водородно-кислородного пламени 2800 °С.

Смесь из 1 части кислорода и 2 частей водорода – «гремучая смесь», наиболее взрывоопасна.

  1. Взаимодействие с серой – при нагревании H2 + S = H2S.
  2. Взаимодействие с азотом. При нагревании , высоком давлении и в присутствии катализатора:

3H2 + N2 = 2NH3.

  1. Взаимодействие с оксидом азота (II). Используется в очистительных системах при производстве азотной кислоты: 2NO + 2H2 = N2 + 2H2O.
  2. Взаимодействие с оксидами металлов. Водород – хороший восстановитель, он восстанавливает многие металлы из их оксидов: CuO + H2 = Cu + H2O.
  3. Сильным восстановителем является атомарный водород. Он образуется из молекулярного в электрическом разряде в условиях низкого давления. Высокой восстановительной активностью обладает водород в момент выделения, образующийся при восстановлении металла кислотой.
  4. Взаимодействие с активными металлами. При высокой температуре соединяется с щелочными и щелочно-земельными металлам и образуя белые кристаллические вещества – гидриды металлов, проявляя свойства окислителя: 2Na + H2 = 2NaH;

Ca + H2 = CaH2.

Получение водорода

В лаборатории:

  1. Взаимодействие металла с разбавленными растворами серной и соляной кислот,

Zn + 2HCl = ZnCl2 + H2.

  1. Взаимодействие алюминия или кремния с водными растворами щелочей:

2Al + 2NaOH + 10H2O = 2Na[Al(H2O)2(OH)4] + 3H2;

Si + 2NaOH + H2O = Na2SiO3 + 2H2.

В промышленности:

  1. Электролиз водных растворов хлоридов натрия и калия или электролиз воды при присутствии гидроксидов:

2NaCl + 2H2O = H2 + Cl2 + 2NaOH;

2Н2О = 2Н2 + О2.

  1. Конверсионный способ. Вначале получают водяной газ, пропуская пары воды через раскаленный кокс при 1000 °С:

С + Н2О = СО + Н2.

Затем оксид углерода (II) окисляют в оксид углерода (IV), пропуская смесь водяного газа с избытком паров воды над нагретым до 400–450 °С катализатором Fe2O3:

CO +H2O = CO2 + H2.

Образующийся оксид углерода (IV) поглощается водой, этим способом получают 50 % промышленного водорода.

  1. Конверсия метана: CH4 + H2O = CO + 3H2.

Реакция протекает в присутствии никелевого катализатора при 800 °С.

  1. Термическое разложение метана при 1200 °С: CH4 = C + 2H2.
  2. Глубокое охлаждение (до -196 °С) коксового газа. При этой температуре конденсируются все газообразные вещества, кроме водорода.

Применение водорода

Применение водорода основано на его физических и химических свойствах:

  • как легкий газ, он используется для наполнения аэростатов (в смеси с гелием);
  • кислородно-водородное пламя применяется для получения высоких температур при сварки металлов;
  • как восстановитель используется для получения металлов (молибдена, вольфрама и др.) из их оксидов;
  • для получения аммиака и искусственного жидкого топлива, для гидрогенизации жиров.

скачатьВодород. Свойства, получение, применение. Историческая справка

43.56kb.

1 стр.

Урока «Водород. Нахождение в природе. Физические и химические свойства. Получение и применение» Тема урока: «Водород. Нахождение в природе. Физические и химические свойства. Получение и применение»

66.93kb.

1 стр.

Применение. Белки, состав, физические свойства, строение, химические свойства, их роль в организме. Полимеры

18.79kb.

1 стр.

Задача. Какой объём кислорода и воздуха (н у) потребуется для сжигания 448 л метана сh4? План ответа

30.25kb.

1 стр.

1. Аммиак, состав его молекулы, физические и химические свойства (отношения к воде, кислороду, кислотам), применение

32.09kb.

1 стр.

Семинар по теме «предельные углеu001fводороды: строение, свойства, получение и применение»
18.9kb.

1 стр.

Задания а 10 (егэ 2013 г) Характерные химические свойства оснований и амфотерных гидроксидов. Характерные химические свойства кислот

108.76kb.

1 стр.

Самостоятельная работа: Аудиторная форма работы: отработка навыков составления конспекта

82.59kb.

1 стр.

Аммиак. Строение молекулы, свойства, получение, применение

96.88kb.

1 стр.

Историческая справка

129.84kb.

1 стр.

Историческая справка

28.73kb.

1 стр.

Историческая справка

32.75kb.

1 стр.

Источник: http://nenuda.ru/%D0%B2%D0%BE%D0%B4%D0%BE%D1%80%D0%BE%D0%B4-%D1%81%D0%B2%D0%BE%D0%B9%D1%81%D1%82%D0%B2%D0%B0-%D0%BF%D0%BE%D0%BB%D1%83%D1%87%D0%B5%D0%BD%D0%B8%D0%B5-%D0%BF%D1%80%D0%B8%D0%BC%D0%B5%D0%BD%D0%B5%D0%BD%D0%B8%D0%B5-%D0%B8%D1%81%D1%82%D0%BE%D1%80%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B0%D1%8F-%D1%81%D0%BF%D1%80%D0%B0%D0%B2%D0%BA%D0%B0.html

Физические свойства водорода. Свойства и применение водорода

Физические свойства водорода

Гидроген Н – химический элемент, один из самых распространённых в нашей Вселенной. Масса водорода как элемента в составе веществ составляет 75 % от общего содержания атомов другого типа.

Он входит в наиважнейшее и жизненно необходимое соединение на планете – воду. Отличительной особенностью водорода также является то, что он первый элемент в периодический системе химических элементов Д. И.

Менделеева.

Открытие и исследование

Первые упоминания о водороде в трудах Парацельса датируются шестнадцатым веком. Но его выделение из газовой смеси воздуха и исследование горючих свойств были произведены уже в семнадцатом веке учёным Лемери.

Досконально изучил гидроген английский химик, физик и естествоиспытатель Генри Кавендиш, который опытным путём доказал, что масса водорода наименьшая в сравнении с другими газами.

В последующих этапах развития науки многие учёные работали с ним, в частности Лавуазье, назвавший его «рождающим воду».

Характеристика по положению в ПСХЭ

Элемент, открывающий периодическую таблицу Д. И. Менделеева, – это водород.

Физические и химические свойства атома проявляют некую двойственность, так как гидроген одновременно относят к первой группе, главной подгруппе, если он ведёт себя как металл и отдаёт единственный электрон в процессе химической реакции, и к седьмой – в случае полного заполнения валентной оболочки, то есть приёме отрицательной частицы, что характеризует его как подобный галогенам.

Свойства атома водорода, сложных веществ, в состав которых он входит, и самого простого вещества Н2 в первую очередь определяются электронной конфигурацией гидрогена.

Частица имеет один электрон с Z= (-1), который вращается по своей орбите вокруг ядра, содержащего один протон с единичной массой и положительным зарядом (+1).

Его электронная конфигурация записывается как 1s1, что означает наличие одной отрицательной частицы на самой первой и единственной для гидрогена s-орбитали.

При отрыве или отдаче электрона, а атом этого элемента имеет такое свойство, что роднит его с металлами, получается катион. По сути ион водорода – это положительная элементарная частица. Поэтому лишенный электрона гидроген называют попросту протоном.

Изотопный состав

Как и многие другие представители периодической системы химических элементов, гидроген имеет несколько природных изотопов, то есть атомов с одинаковым числом протонов в ядре, но различным числом нейтронов – частиц с нулевым зарядом и единичной массой. Примеры атомов, обладающих подобным свойством – кислород, углерод, хлор, бром и прочие, в том числе радиоактивные.

Физические свойства водорода 1Н, самого распространённого из представителей данной группы, значительно отличаются от таких же характеристик его собратьев. В частности, разнятся особенности веществ, в состав которых они входят.

Так, существует обычная и дейтерированная вода, содержащая в своём составе вместо атома водорода с одним-единственным протоном дейтерий 2Н – его изотоп с двумя элементарными частицами: положительной и незаряженной. Этот изотоп в два раза тяжелее обычного гидрогена, что и объясняет кардинальное различие в свойствах соединений, которые они составляют.

В природе дейтерий встречается в 3200 раз реже, чем водород. Третий представитель – тритий 3Н, в ядре он имеет два нейтрона и один протон.

Способы получения и выделения

Лабораторные и промышленные методы получения водорода весьма отличаются. Так, в малых количествах газ получают в основном с помощью реакций, в которых участвуют минеральные вещества, а крупномасштабные производства в большей степени используют органический синтез.

В лаборатории применяют следующие химические взаимодействия:

  1. Реакция щелочных и щелочноземельных металлов с водой с образованием щёлочи и искомого газа.
  2. Электролиз водного раствора электролита, на аноде выделяется Н2↑, а на катоде – кислород.
  3. Разложение гидридов щелочных металлов водой, продуктами являются щёлочь и, соответственно, газ Н2↑.
  4. Взаимодействие разбавленных кислот с металлами с образованием солей и Н2↑.
  5. Действие щелочей на кремний, алюминий и цинк также способствует выделению водорода параллельно с образованием комплексных солей.

В промышленных интересах газ получают такими методами, как:

  1. Термическое разложение метана в присутствии катализатора до составляющих его простых веществ (350 градусов достигает значение такого показателя, как температура) – водорода Н2↑ и углерода С.
  2. Пропускание парообразной воды через кокс при 1000 градусов Цельсия с образованием углекислого газа СО2 и Н2↑ (самый распространённый метод).
  3. Конверсия газообразного метана на никелевом катализаторе при температуре, достигающей 800 градусов.
  4. Водород является побочным продуктом при электролизе водных растворов хлоридов калия или натрия.

Химические взаимодействия: общие положения

Физические свойства водорода во многом объясняют его поведение в процессах реагирования с тем или иным соединением. Валентность гидрогена равняется 1, так как он в таблице Менделеева расположен в первой группе, а степень окисления проявляет различную. Во всех соединениях, кроме гидридов, водород в с.о.= (1+), в молекулах типа ХН, ХН2, ХН3 – (1-).

Молекула газа водорода, образованная посредством создания обобщенной электронной пары, состоит из двух атомов и довольно устойчива энергетически, именно поэтому при нормальных условиях несколько инертна и в реакции вступает при изменении нормальных условий. В зависимости от степени окисления водорода в составе прочих веществ, он может выступать как в качестве окислителя, так и восстановителя.

Вещества, с которыми реагирует и которые образует водород

Элементные взаимодействия с образованием сложных веществ (часто при повышенных температурах):

  1. Щелочной и щелочноземельный металл + водород = гидрид.
  2. Галоген + Н2 = галогеноводород.
  3. Сера + водород = сероводород.
  4. Кислород + Н2 = вода.
  5. Углерод + водород = метан.
  6. Азот + Н2 = аммиак.

Взаимодействие со сложными веществами:

  1. Получение синтез-газа из монооксида углерода и водорода.
  2. Восстановление металлов из их оксидов с помощью Н2.
  3. Насыщение водородом непредельных алифатических углеводородов.

Водородная связь

Физические свойства водорода таковы, что позволяют ему, находясь в соединении с электроотрицательным элементом, образовывать особый тип связи с таким же атомом из соседних молекул, имеющих неподелённые электронные пары (например, кислородом, азотом и фтором).

Ярчайший пример, на котором лучше рассмотреть подобное явление, – это вода. Она, можно сказать, прошита водородными связями, которые слабее ковалентных или ионных, но за счёт того, что их много, оказывают значительное влияние на свойства вещества.

По сути, водородная связь – это электростатическое взаимодействие, которое связывает молекулы воды в димеры и полимеры, обосновывая её высокую температуру кипения.

В состав всех неорганических кислот входит протон – катион такого атома, как водород. Вещество, кислотный остаток которого имеет степень окисления больше (-1), называется многоосновным соединением.

В нём присутствует несколько атомов водорода, что делает диссоциацию в водных растворах многоступенчатой. Каждый последующий протон отрывается от остатка кислоты всё труднее.

По количественному содержанию водородов в среде определяется его кислотность.

Водород содержат и гидроксильные группы оснований. В них водород соединён с атомом кислорода, в результате степень окисления этого остатка щёлочи всегда равна (-1). По содержанию гидроксилов в среде определяется её основность.

Применение в деятельности человека

Баллоны с веществом, так же как и емкости с другими сжиженными газами, например кислородом, имеют специфический внешний вид. Они выкрашены в темновато-зелёный цвет с ярко-красной надписью «Водород».

Газ закачивают в баллон под давлением порядка 150 атмосфер.

Физические свойства водорода, в частности легкость газообразного агрегатного состояния, используют для наполнения им в смеси с гелием аэростатов, шаров-зондов и т.д.

Водород, физические и химические свойства которого люди научились использовать много лет назад, на сегодняшний момент задействован во многих отраслях промышленности. Основная его масса идёт на производство аммиака.

Также водород участвует в получении металлов (гафния, германия, галлия, кремния, молибдена, вольфрама, циркония и прочих) из окислов, выступая в реакции в качестве восстановителя, синильной и соляной кислот, метилового спирта, а также искусственного жидкого топлива.

Пищевая промышленность использует его для превращения растительных масел в твёрдые жиры.

Определили химические свойства и применение водорода в различных процессах гидрогенизации и гидрирования жиров, углей, углеводородов, масел и мазута. С помощью него производят драгоценные камни, лампы накаливания, проводят ковку и сварку металлических изделий под воздействием кислородно-водородного пламени.

Источник: http://fb.ru/article/193697/fizicheskie-svoystva-vodoroda-svoystva-i-primenenie-vodoroda

Водород, его особые свойства и реакции

Физические свойства водорода
[Deposit Photos]

Водород – особый элемент, занимающий сразу две ячейки в периодической системе Менделеева.

Он располагается в двух группах элементов, обладающих противоположными свойствами, и эта особенность делает его уникальным.

Водород является простым веществом и составной частью многих сложных соединений, это органогенный и биогенный элемент. Стоит подробно ознакомиться с основными его особенностями и свойствами.

Водород в периодической системе Менделеева

Главные особенности водорода, указанные в периодической системе:

  • порядковый номер элемента – 1 (протонов и электронов столько же);
  • атомная масса составляет 1,00795;
  • водород имеет три изотопа, каждый из которых обладает особыми свойствами;
  • благодаря содержанию только одного электрона, водород способен проявлять восстановительные и окислительные свойства, а после отдачи электрона водород имеет свободную орбиталь, принимающую участие в составлении химических связей по донорно-акцепторному механизму;
  • водород – легкий элемент с небольшой плотностью;
  • водород является сильным восстановителем, он открывает группу щелочных металлов в первой группе главной подгруппе;
  • когда водород вступает в реакцию с металлами и другими сильными восстановителями, он принимает их электрон и становится окислителем. Такие соединения называются гидридами. По указанному признаку водород условно относится к группе галогенов (в таблице он приводится над фтором в скобках), с которыми он имеет сходство.

Водород как простое вещество

Водород — это газ, молекула которого состоит из двух атомов. Это вещество было открыто в 1766 году британским ученым Генри Кавендишем. Он доказал, что водород является газом, который взрывается при взаимодействии с кислородом. После изучения водорода химики установили, что это вещество является самым легким из всех известных человеку.

Другой ученый, Лавуазье, присвоил элементу имя «гидрогениум», что в переводе с латыни означает «рождающий воду». В 1781 году Генри Кавендиш доказал, что вода является сочетанием кислорода и водорода. Другими словами, вода — это продукт реакции водорода с кислородом. Горючие свойства водорода были известны еще древним ученым: соответствующие записи оставил Парацельс, живший в XVI столетии.

via GIPHY

Молекулярный водород — это образующееся естественным путем распространенное в природе газообразное соединение, которое состоит из двух атомов и взрывается при поднесении горящей лучинки. Молекула водорода может распадаться на атомы, превращающиеся в ядра гелия, так как они способны участвовать в ядерных реакциях. Такие процессы регулярно протекают в космосе и на Солнце.

[Deposit Photos]

Водород имеет такие физические параметры:

  • кипит при температуре -252,76 °C;
  • плавится при температуре -259,14 °C;*в указанных температурный пределах водород — это не имеющая запаха бесцветная жидкость;
  • в воде водород слабо растворяется;
  • водород теоретически может перейти в металлическое состояние при обеспечении особых условий (низких температур и высокого давления);
  • чистый водород — взрывоопасное и горючее вещество;
  • водород способен диффундировать сквозь толщу металлов, поэтому хорошо в них растворяется;
  • водород легче воздуха в 14,5 раз;
  • при высоком давлении можно получить снегообразные кристаллы твердого водорода.

Химические свойства водорода

[Deposit Photos]

Так как водород может быть и окислителем, и восстановителем, его используют в промышленности для осуществления реакций и синтезов.

Окислительные свойства:

  • взаимодействует с активными (щелочными и щелочноземельными) металлами, в результате чего образуются гидриды — солеподобные образования;
  • при реакции водорода (под воздействием сильной освещенности или при нагревании) с малоактивными металлами также образуются гидриды.

Восстановительные свойства:

  • при обычных условиях водород вступает в реакцию только с активными металлами и фтором, который является сильным окислителем, в результате чего образуется плавиковая кислота HF или фтороводород;
  • при соблюдении жестких условий взаимодействует с большинством неметаллов;
  • обладает способностью восстанавливать металлы до простых веществ из их оксидов (этот промышленный способ получения металлов называют водородотермией).

В органических синтезах используются реакции насыщения водородом (гидрирования) и реакции отщепления водорода от молекулы (дегидрирования). Эти способы позволяют получать углеводороды и другие органические соединения.

Как получить водород

Промышленные способы получения водорода:

  • газификация угля;
  • паровая конверсия метана;
  • электролиз.

via GIPHY

Лабораторные способы:

  • взаимодействие разбавленных кислот с активными металлами и металлами средней активности;
  • гидролиз гидридов металлов;
  • реакция с водой щелочных и щелочноземельных металлов.

Соединения водорода:

• галогенводороды;• летучие водородные соединения неметаллов;• гидриды;• гидроксиды;• гидроксид водорода (вода);• пероксид водорода;• органические соединения (белки, жиры, углеводороды, витамины, липиды, эфирные масла, гормоны).Нажмите здесь, чтобы увидеть безопасные эксперименты на изучение свойств белков, жиров и углеводов.

Чтобы собрать образующийся водород, нужно держать пробирку перевернутой вверх дном. Водород нельзя собрать, как углекислый газ, ведь он намного легче воздуха. Водород быстро улетучивается, а при смешении с воздухом (или при большом скоплении) взрывается. Поэтому необходимо переворачивать пробирку. Сразу после заполнения пробирка закрывается резиновой пробкой.

Чтобы проверить чистоту водорода, нужно поднести зажженную спичку к горлышку пробирки. Если произойдет глухой и тихий хлопок — газ чистый, а примеси воздуха минимальные. Если хлопок громкий и свистящий — газ в пробирке грязный, в нем присутствует большая доля посторонних компонентов.

Внимание! Не пытайтесь повторить эти опыты самостоятельно!

Источник: https://melscience.com/ru/articles/vodorod-ego-osobye-svojstva-i-reakcii/

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.

    ×
    Рекомендуем посмотреть