Классификация кислот
Кислоты — классификация, свойства, получение и применение
Кислоты (неорганические, минеральные) — это сложные соединения состоящие из катиона водорода (H+) и аниона кислотного остатка(SO32-, SO42-, NO3— и т.д).
Кислотам дали такое название не просто так. Большинство из них имеют кислый вкус. С некоторыми из них знаком каждый из вас. Это, например, уксусная кислота, которая есть в каждом доме, аскорбиновая кислота (она же витамин C), лимонная кислота и т.д. Но не стоит все кислоты пробовать на вкус. Кислоты являются очень едкими веществами.
Даже всем нам привычная и известная аскорбиновая кислота в большой концентрации будет вредна нашему организму. А от более сильных кислот — серной, соляной и даже уксусной — можно получить очень сильные ожоги, вплоть до летального исхода.
Поэтому при работе с кислотами нужно быть осторожными, а также соблюдать технику безопасности!!!
Таблица названий некоторых кислот и их солей
Серная | H2SO4 | Сульфат |
Сернистая | H2SO3 | Сульфит |
Сероводородная | H2S | Сульфид |
Соляная (хлористоводородная) | HCl | Хлорид |
Фтороводородная (плавиковая) | HF | Фторид |
Бромоводородная | HBr | Бромид |
Йодоводородная | HI | Йодид |
Азотная | HNO3 | Нитрат |
Азотистая | HNO2 | Нитрит |
Ортофософорная | H3PO4 | Фосфат |
Угольная | H2CO3 | Карбонат |
Кремниевая | H2SiO3 | Силикат |
Уксусная | CH3COOH | Ацетат |
Классификация кислот
Кислородсодержащие (H2SO4) | Бескислородные (HCl) |
Одноосновные (HCl) | Двухосновные (H2SO4) | Трёхосновные (H3PO4) |
Понятие «одноосновная кислота» произошло по причине того, что для нейтрализации одной молекулы одноосновной кислоты нам понадобится одна молекула основания. для двухосновной — соответственно две молекулы и т. д.
Растворимые (HCl) | Нерастворимые (H2SiO3) |
Сильные (H2SO4) | Слабые (CH3COOH) |
Летучие (H2S) | Нелетучие (H2SO4) |
Устойчивые (H2SO4) | Неустойчивые (H2CO3) |
Изменение цвета индикаторов в кислой среде
Метилоранж | оранжевый | красный |
Лакмус | фиолетовый | красный |
Фенолфталеин | бесцветный | бесцветный |
Бромтимоловый синий | зеленый | желтый |
бромкрезоловый зеленый | синий | желтый |
Химические свойства кислот
- Взаимодействие с металлами (в ряду активности находящихся до водорода), протекает с выделением газообразного водорода и образованием солей:
H2SO4 + 2Na → Na2SO4 + H2↑
Металлы, находящиеся в ряду активности после водорода, не вступают в реакцию с кислотой (кроме концентрированной серной кислоты).
Азотная и концентрированная серная кислоты проявляют свойства окислителей, и продукты реакций будут зависеть от концентрации, температуры и природы восстановителя.
- Взаимодействуют с оксидами основных и амфотерных металлов с образованием солей и воды:
H2SO4 + MgO → MgSO4 + H2O
- С основаниями, с образованием солей и воды (так называемая реакция нейтрализации):
H2SO4 + 2NaOH → Na2SO4 + H2O
- Кислоты могут взаимодействовать с солями, если в результате реакции будет образовываться нерастворимая соль, или выделяться газ:
H2SO4 + K2CO3 → K2SO4 + H2O + CO2↑
- Сильные кислоты могут вытеснять из солей более слабые кислоты:
3H2SO4 + 2K3PO4 → 3K2SO4 + H3PO4
Получение кислот
- Взаимодействие кислотного оксида с водой:
H2O + SO3 →H2SO4
- Взаимодействие водорода и неметалла:
H2 + Cl2 → 2HCl
- Вытеснение слабой кислоты из солей, более сильной кислотой:
3H2SO4 + 2K3PO4 → 3K2SO4 + H3PO4
Применение кислот
В настоящее время, минеральные и органические кислоты находят множество сфер применения.
Серная кислота (H2SO4), находит широкое применение в химической технологии, для производства лакокрасочных материалов, производстве минеральных удобрений, в пищевой промышленности (пищевая добавка Е513), в качестве электролита в производстве аккумуляторных батарей.
Раствор двухромовокислого калия в серной кислоте (хромовая смесь) используются в лабораториях для мытья химической посуды. Являясь сильным окислителем, хромка позволяет отмывать посуду от следов загрязнений органическими веществами. Так же, хромовая смесь используется в органическом синтезе.
Борная кислота (H3BO3) используется в медицине как антисептик, в качестве флюса при пайке металлов, как борсодержащее удобрение, в домашнем хозяйстве используется как средство от тараканов.
Широко известны в домашнем использовании при выпечке уксусная и лимонная кислоты. Также в быту их используют для удаления накипи.
Знакомая всем с детства аскорбиновая кислота, более известная в народе как витамин С, применяется при лечении простудных заболеваний.
Азотная кислота (HNO3) находит применение при производстве взрывчатых веществ, при производстве минеральных азотсодержащих удобрений (аммиачная, калиевая селитра), в производстве лекарственных средств (нитроглицерин).
Источник: https://in-chemistry.ru/kisloty-klassifikatsiya-svojstva-poluchenie-primenenie
Кислоты: примеры, таблица. Свойства кислот
Кислоты – это такие химические соединения, которые способны отдавать электрически заряженный ион (катион) водорода, а также принимать два взаимодействущих электрона, вследствие чего образуется ковалентная связь.
В данной статье мы рассмотрим основные кислоты, которые изучают в средних классах общеобразовательных школ, а также узнаем множество интересных фактов о самых разных кислотах. Приступим.
Кислоты: виды
В химии существует множество самых разнообразных кислот, которые имеют самые разные свойства.
Химики различают кислоты по содержанию в составе кислорода, по летучести, по растворимости в воде, силе, устойчивости, принадлежности к органическому или неорганическому классу химических соединений.
В данной статье мы рассмотрим таблицу, в которой представлены самые известные кислоты. Таблица поможет запомнить название кислоты и ее химическую формулу.
Химическая формула | Название кислоты |
H2S | Сероводородная |
H2SO4 | Серная |
HNO3 | Азотная |
HNO2 | Азотистая |
HF | Плавиковая |
HCl | Соляная |
H3PO4 | Фосфорная |
H2CO3 | Угольная |
Итак, все наглядно видно. В данной таблице представлены самые известные в химической промышленности кислоты. Таблица поможет намного быстрее запомнить названия и формулы.
Сероводородная кислота
H2S – это сероводородная кислота. Ее особенность заключается в том, что она еще и является газом. Сероводород очень плохо растоворяется в воде, а также взаимодействует с очень многими металлами. Сероводородная кислота относится к группе “слабые кислоты”, примеры которых мы рассмотрим в данной статье.
H2S имеет немного сладковатый вкус, а также очень резкий запах тухлых яиц. В природе ее можно встретить в природном или вулканическом газах, а также она выделяется при гниении белка.
Свойства кислот очень разнообразны, даже если кислота незаменима в промышленности, то может быть очень неполезна для здоровья человека. Данная кислота очень токсична для человека.
При вдыхании небольшого количество сероводорода у человека пробуждается головная боль, начинается сильная тошнота и головокружение.Если же человек вдохнет большое количество H2S, то это может привести к судорогам, коме или даже мгновенной смерти.
Серная кислота
H2SO4 – это сильная серная кислота, с которой дети знакомятся на уроках химии еще в 8-м классе. Химические кислоты, такие как серная, являются очень сильными окислителями. H2SO4 действует как окислитель на очень многие металлы, а также основные оксиды.
H2SO4 при попадании на кожу или одежду вызывает химические ожоги, однако она не так токсична, как сероводород.
Азотная кислота
В нашем мире очень важны сильные кислоты. Примеры таких кислот: HCl, H2SO4, HBr, HNO3. HNO3 – это всем известная азотная кислота. Она нашла широкое применение в промышленности, а также в сельском хозяйстве. Ее используют для изготовления различных удобрений, в ювелирном деле, при печати фотографий, в производстве лекарственных препаратов и красителей, а также в военной промышленности.
Такие химические кислоты, как азотная, являются очень вредными для организма. Пары HNO3 оставляют язвы, вызывают острые воспаления и раздражения дыхательных путей.
Азотистая кислота
Азотистую кислоту очень часто путают с азотной, но разница между ними есть. Дело в том, что азотистая кислота намного слабее азотной, у нее совершенно другие свойства и действие на организм человека.
HNO2 нашла широкое применение в химической промышленности.
Плавиковая кислота
Плавиковая кислота (или фтороводород) – это раствор H2O c HF. Формула кислоты – HF. Плавиковая кислота очень активно используется в алюминиевой промышленности. Ею растворяют силикаты, травят кремний, силикатное стекло.
Фтороводород является очень вредным для организма человека, в зависимости от его концентрации может быть легким наркотиком. При попадании на кожу сначала никаких изменений, но уже через несколько минут может появиться резкая боль и химический ожог. Плавиковая кислота очень вредна для окружающего мира.
Соляная кислота
HCl – это хлористый водород, является сильной кислотой. Хлористый водород сохраняет свойства кислот, относящихся к группе сильных. На вид кислота прозрачна и бесцветна, а на воздухе дымится. Хлористый водород широко применяется в металлургической и пищевой промышленностях.
Данная кислота вызывает химические ожоги, но особо опасно ее попадание в глаза.
Фосфорная кислота
Фосфорная кислота (H3PO4) – это по своим свойствам слабая кислота. Но даже слабые кислоты могут иметь свойства сильных. Например, H3PO4 используют в промышленности для восстановления железа из ржавчины. Помимо этого, форсфорная (или ортофосфорная) кислота широко используется в сельском хозяйстве – из нее изготавливают множество разнообразных удобрений.
Свойства кислот очень схожи – практически каждая из них очень вредна для организма человека, H3PO4 не является исключением. Например, эта кислота также вызывает сильные химические ожоги, кровотечения из носа, а также крошение зубов.
Угольная кислота
H2CO3 – слабая кислота. Ее получают при растворении CO2 (углекислый газ) в H2O (вода). Угольную кислоту используют в биологии и биохимии.
Плотность различных кислот
Плотность кислот занимает важное место в теоретической и практической частях химии.
Благодаря знанию плотности можно определить концентрацию той или иной кислоты, решить расчетные химические задачи и добавить правильное количество кислоты для совершения реакции.
Плотность любой кислоты меняется в зависимости от концентрации. Например, чем больше процент концентрации, тем больше и плотность.
Общие свойства кислот
Абсолютно все кислоты являются сложными веществами (то есть состоят из нескольких элементов таблицы Менделеева), при этом обязательно включают в свой состав H (водород). Далее мы рассмотрим химические свойства кислот, которые являются общими:
- Все кислородсодержащие кислоты (в формуле которых присутствует O) при разложении образуют воду, а также кислотный оксид. А бескислородные при этом разлагаются на простые вещества (например, 2HF разлагается на F2 и H2).
- Кислоты-окислители взаимодействуют со всеми металлами в ряду активности металлов (только с теми, которые расположены слева от H).
- Взаимодействуют с различными солями, но только с теми, которые были образованы еще более слабой кислотой.
По своим физическим свойствам кислоты резко отличаются друг от друга. Ведь они могут иметь запах и не иметь его, а также быть в самых разных агрегатных состояниях: жидких, газообразных и даже твердых. Очень интересны для изучения твердые кислоты. Примеры таких кислот: C2H204 и H3BO3.
Концентрация
Концентрацией называют величину, которая определяет количественный состав любого раствора. Например, химикам часто необходимо определить то, сколько в разбавленной кислоте H2SO4 находится чистой серной кислоты.
Для этого они наливают небольшое количество разбавленной кислоты в мерный стакан, взвешивают и определяют концентрацию по таблице плотности.
Концентрация кислот узко взаимосвязана с плотностью, часто на определение концетрации встречаются расчетные задачи, где нужно определить процентное количество чистой кислоты в растворе.
Одной из самых популярных классификаций является разделение всех кислот на одноосновные, двухосновные и, соответственно, трехосновные кислоты. Примеры одноосновных кислот: HNO3 (азотная), HCl (хлороводородная), HF (фтороводородная) и другие.
Данные кислоты называются одноосновными, так как в их составе присутствует всего лишь один атом H. Таких кислот множество, абсолютно каждую запомнить невозможно. Нужно лишь запомнить, что кислоты классифицируют и по количеству атомов H в их составе. Аналогично определяются и двухосновные кислоты.
Примеры: H2SO4 (серная), H2S (сероводородная), H2CO3 (угольная) и другие. Трехосновные: H3PO4 (фосфорная).
Основная классификация кислот
Одной из самых популярных классификаций кислот является разделение их на кислородосодержащие и бескислородные. Как запомнить, не зная химической формулы вещества, что это кислота кислородосодержащая?
У всех бескислородных кислот в составе отсутствует важный элемент O – кислород, но зато в составе есть H. Поэтому к их названию всегда приписывается слово “водородная”. HCl – это хлороводородная кислота, a H2S – сероводородная.
Но и по названиям кислосодержащих кислот можно написать формулу. Например, если число атомов O в веществе – 4 или 3, то к названию всегда прибавляется суффикс -н-, а также окончание -ая-:
- H2SO4 – серная (число атомов – 4);
- H2SiO3 – кремниевая (число атомов – 3).
Если же в веществе меньше трех атомов кислорода или три, то в названии используется суффикс -ист-:
- HNO2 – азотистая;
- H2SO3 – сернистая.
Общие свойства
Все кислоты имеют вкус кислый и часто немного металлический. Но есть и другие схожие свойства, которые мы сейчас рассмотрим.
Есть такие вещества, которые называются индикаторами. Индикаторы изменяют свой цвет, или же цвет остается, но меняется его оттенок. Это происходит в то время, когда на индикаторы действуют какие-то другие вещества, например кислоты.
Примером изменения цвета может служить такой привычный многим продукт, как чай, и лимонная кислота. Когда в чай бросают лимон, то чай постепенно начинает заметно светлеть. Это происходит из-за того, что в лимоне содержится лимонная кислота.
Существуют и другие примеры. Лакмус, который в нейтральной среде имеет сиреневый цвет, при добавлении соляной кислоты становится красным.
При взаимодействии кислот с металлами, находящимися в ряду напряженности до водорода, выделяются пузырьки газа – H. Однако если в пробирку с кислотой поместить металл, который находится в ряду напряженности после H, то никакой реакции не произойдет, выделения газа не будет. Так, медь, серебро, ртуть, платина и золото с кислотами реагировать не будут.
В данной статье мы рассмотрели самые известные химические кислоты, а также их главные свойства и различия.
Источник: http://fb.ru/article/238038/kislotyi-primeryi-tablitsa-svoystva-kislot
Номенклатура, классификация и свойства карбоновых кислот
1001student.ru > Химия > Номенклатура, классификация и свойства карбоновых кислот
Органические соединения, называемые карбоновыми кислотами, — класс органических соединений, в составе молекул которых содержатся карбоксильные группы, -COOH, одна или несколько. Лёгкое отщепление протона карбоксильной группы обуславливает кислые свойства таких соединений.
- Номенклатура и строение органических соединений
- Классификация карбоновых кислот
- Качественные реакции
- Физические свойства
- Химические свойства
- Способы получения
- Применение карбоновых кислот
Номенклатура и строение органических соединений
Название в номенклатуре ИЮПАК строится из названия углеводорода, соответствующего углеродной цепочке, содержащей функциональную группу, с окончанием «овая» и добавлением слова «кислота».
Атом углерода в составе карбоксильной группы считается первым в углеводородной цепочке.
Например, для формулы СН3-СН2-COOH название вещества — пропановая кислота, а СН3-С(СН3)-СООН — 2-метилпропановая, CH3CH2CH2COOH — бутановая.
https://www.youtube.com/watch?v=DDd5-iMaQDE
Рациональная номенклатура к названию углеводорода требует добавления окончания «карбоновая» и слова «кислота», причём атом углерода карбоксила в нумерацию не включается. Например, этилкарбоновая кислота — СН3-СН2-СООН.
У многих веществ гомологического ряда кислот есть тривиальные названия. Например, уксусная (СН3-СООН), муравьиная (НСООН), валериановая (С4Н8-СООН), маргариновая (С16Н33-СООН) и многие другие.
Функциональная группа COOH состоит из карбонила — CO и гидроксила — OH, тем не менее свойства кислот отличаются от свойств альдегидов и спиртов, содержащих в своём составе эти группы.Общая формула предельных одноосновных карбоновых кислот R-COOH, где R — углеводородный радикал.
Классификация карбоновых кислот
Молекулы, содержащие одну функциональную группу, будут называться одноосновными (монокарбоновыми), содержащие две и более — ди- и многоосновными (соответственно ди- и поликарбоновыми).
В зависимости от того, с каким радикалом связан карбоксил, кислоты разделяют на следующие:
- ареновые;
- алифатические;
- алициклические;
- гетероциклические.
По насыщенности углеводородного радикала разделяют насыщенные (предельные, алкановые) и ненасыщенные (непредельные).
При других функциональных группах кислоты будут называться гетерофункциональными, например, аминокислоты, нитрокислоты и т. д.
Качественные реакции
Самые основные качественные реакции органической химии:
- окраска индикатора — красное окрашивание лакмуса;
- реакция с карбонатами или гидрокарбонатами, например, с содой — выделение СО2;
- реакция этерификации — характерный запах продукта реакции (эфира).
Физические свойства
С увеличением массы молекулы уменьшается плотность и растворимость в воде, температура кипения же, напротив, увеличивается. Так, низшие, например, уксусная и муравьиная кислоты являются растворимыми в воде жидкостями, а высшие карбоновые кислоты, такие как пеларгоновая, стеариновая, пальмитиновая и другие — твёрдые вещества, которые в воде не растворяются.
Молекулы монокарбоновых кислот образуют довольно прочные водородные связи. В твёрдом и жидком состояниях они находятся в виде циклических димеров, а в водных растворах — в виде линейных.
Интересная закономерность наблюдается в изменении температур плавления кислот нормального строения. Кислоты, количество атомов углерода в радикале, которых чётное, кипят при более высоких температурах, чем имеющие нечётное.
Объясняется это симметричностью строения молекул с чётным количеством углеродных атомов и, как следствие, более сильным взаимодействием между молекулами, а значит большей прочностью кристаллической решётки вещества.
Молекулы же нечётного ряда взаимодействуют слабее, соответственно, разрушить их взаимодействие при нагревании проще.
Химические свойства
Таблица основных свойств карбоновых кислот.
Кислотные свойства | |
Характерные кислотные свойства проявляются в реакциях с металлами, гидроксидами и основными оксидами, а также при вытеснении кислоты (более слабой) из соли. | 2CH3COOH + Mg ⟶ (CH3COO)2Mg + H2 CH3COOH + koh ⟶ CH3COO К + H2O CH3COOH + NH4OH ⟶ CH3COONH4 + H2O 2CH3COOH + CaO ⟶ (CH3COO)2C a + H2O 2CH3COOH + Na2SiO3 ⟶ H2SiO3 + 2CH3COONa |
Диссоциация | |
В водных растворах поведение монокарбоновых аналогично поведению одноосновных: происходит ионизация молекулы с образованием иона водорода и карбоксилат иона. | RCOOH ⟶ RCOO — + Н+ |
Восстановление | |
Восстановление до спирта происходит при помощи литийалюминийгидрида ( LiAlH4), а также при кипячении в тетрагидрофуране. Плюсом восстановления в диборане (B2H4) является то, что процесс идёт в более мягких условиях и восстановление других функциональных групп не происходит (NO2, COOR и СN). | CH3(CH2)4COOH + H2 → CH3(CH2)4CH2OH + H2O |
Окисление | |
В атмосфере кислорода происходит окисление с выделением углекислого газа и воды. | CH3COOH + 2O2 ⟶ 2СO2 + 2H2O |
Декарбоксилирование | |
Насыщенные одноосновные огранические соединения сложно подвергаются декарбоксилированию даже при нагревании из-за прочности связи углерод-углерод:
|
|
Реакция этерификации | |
Нагревание в присутствии H2SO4 спирта и карбоновой кислоты приводит к сложным эфирам | CH3COOH + CH3CH2OH ⟶ CH3COOCH2CH3 + H2O |
Образование производных | |
Замещение гидроксильной группы другой функциональной группой (Х) приводит к образованию веществ с общей формулой RCO — X . Это могут быть, например:
|
|
Получение ангидридов | |
Производные общей формулой R-C(O)-O-C(O)-R получают межмолекулярной дегидратацией карбоновых органических соединений. Реакция проходит в присутствии водоотнимающего агента (P2O5). | CH3COOH + CH3COOH ⟶ CH3 -C(O)-O-C(O)- CH3 |
Галогенирование | |
Взаимодействие с галогенами на свету приводит к образованию галогензамещённых (α-галогенкарбоновых) кислот. | C2H5COOH + Br2 ⟶ CH3CH(Br)COOH + HBr или CH3COOH + 3Cl2 ⟶ C(Cl)3COOH + 3HCl |
Карбоновые считаются слабыми кислотами. При этом монокарбоновые слабее ди- и трикарбоновых кислот. Заместители, являющиеся донорами электронов, ослабляют кислотные свойства, а электроноакцепторные заместители их усиливают, как и кратные связи. Чем дальше заместитель от карбоксильной группы, тем слабее его влияние.
К важным свойствам таких производных, как соли относится реакция получения кетонов методом пиролиза. Кальциевые, ториевые или бариевые соли при нагревании до температуры около 300 °С превращаются в кетоны.
Способы получения
В лаборатории можно получить:
- окислением: альдегидов R-COH + [O] → R-COOH, спиртов R-CH2-OH + 2[O] → R-COOH + H2O, алкенов;
- деструкцией алкенов;
- гидролизом сложных эфиров R-COOR1 + H2O → R-COOH + R1-COOH, галогенпроизводных R-COCl + NaOH → 2R-COOH + NaCl, амидов, нитрилов, тригалогеналканов;
- декарбоксилированием;
- из солей R-COONa + HCl → R-COOH + NaCl;
- растворением ангидридов (R-CO)2O + H2O → 2R-COOH.
Промышленные способы синтеза основаны на окислении углеводородов с длинными углеводородными цепями. Процесс многоступенчатый с множеством побочных продуктов.
Окисление алкенов: 2CH3-CH2-CH2-CH3 + 5O2 → 4CH3COOH + 2H2O.
Окисление алкенов: CH2=CH2 + O2 → CH3COOHСH3-CH=CH2 + 4[O] → CH3COOH + HCOOH.
Некоторые кислоты (такие как муравьиная, масляная, уксусная, валериановая и прочие) получаются специфическими способами с использованием природных ингредиентов (жиров, эфирных масел, восков).
Применение карбоновых кислот
Применяют кислоты в химической промышленности в качестве исходных соединений для органического синтеза, например, галогенкислот, кетонов, виниловых эфиров.
Области применения муравьиной кислоты основаны на её бактерицидных свойствах. Она применяется в качестве антисептика, в пищевой промышленности, а так же сельском хозяйстве как консервант.
В пищевой, химической, фармацевтической промышленности, а также в домашнем хозяйстве активно применяется уксусная.
Масляная кислота в химической промышленности используется в качестве вещества, из которого производят ароматизаторы, пластификаторы, с её помощью экстрагируют щелочно-земельные металлы.
Щавелевая может применяться в качестве реагента в аналитической химии органических веществ, в металлургической промышленности, для приготовления чернил.
Стеариновая C17H35COOH, пальмитиновая C15H31COOH используются как компонент косметических средств, в качестве смазочного материала при обработке металлов. Их натриевая соль является поверхностно активным веществом.
Источник: https://1001student.ru/himiya/nomenklatura-klassifikatsiya-i-svojstva-karbonovyh-kislot.html
Х и м и я
Карбоновые кислоты — это органические соединения, которые характеризуются присутствием в их молекулах карбоксильной группы -СООН.
Карбоксильная группа является функциональной (характеристической) группой этого класса соединений. Примерами карбоновых кислот могут служить:
Кислотный характер этих соединений является результатом того, что атом водорода гидроксильной группы способен диссоциировать с образованием иона водорода, например:
Взаимодействуя с основаниями карбоновые кислоты образуют соли:
Карбоновые кислоты являются слабыми кислотами, поэтому их соли подвергаются обратимоми гидролизу. Наиболее сильные из карбоновых кислот – муравьиная и уксусная.
Карбоновые кислоты со спиртами образуют сложные эфиры. Сложные эфиры – чрезвычайно важное соединение, очень часто встречающееся в продуктах животного и растительного мира.
Одноосновные и двухосновные карбоновые кислоты
Карбоновые кислоты делятся одноосновные и двухосновные в зависимости от кличества в их составе гидроксильных групп ОН.
Все карбоновые кислоты, рассмотренные выше – это примеры одноосновных кислот. В их сотавах содержится по одной гидроксильной группе.
Соответственно, в молекулах двухосновных кислот содержится по две гидроксильных группы. К двухосновным карбоновым кислотам относятся, например, щавелевая или терефталиевая кислоты.
Низшие, средние и высшие карбоновые кислоты
По числу атомов углерода в молекуле карбоновые кислоты делят на:
Низшие (С1-С3),
Средние (С4-С8) и
Высшие (С9-С26).
Высшие карбоновые кислоты называют высшими жирными кислотами, по причине того, что они входят в состав природных жиров.
Но иногда жирными называют все ациклические карбоновые кислоты. Таким образом, термины «жирные кислоты» и «карбоновые кислоты» часто используются как синонимы.
Предельные и непредельные карбоновые кислоты
Предельные карбоновые кислоты в своём составе, содержат радикал предельных углеводородов, т.е. радикал только с простыми, одинарными связями.
И наоборот, непредельные карбоновые кислоты в своём составе содержат радикал непредельных углеводородов, т.е. радикал, в котором присутствуют кратные (двойные и тройные) связи.
Высшие карбоновые (жирные) кислоты
Напомним, что высшим карбоновым кислотам относят такие карбоновые кислоты, молекулы которых содержат сравнительно большое число атомов углерода (С9-С26).
По причине того, что высшие карбоновые кислоты входят в состав животных и растительных жиров их называют высшими жирными кислотами.
Примеры предельных высших жирных кислот:
- Каприновая кислота – C9H19COOH,
- Лауриновая кислота – С11Н23СООН,
- Миристиновая кислота – С13Н27СООН,
- Пальмитиновая кислота – С15Н31СООН,
- Стеариновая кислота – С17Н35СООН.
Примеры непредельных высших жирных кислот:
- Олеиновая кислота – С17Н33СООН – имеет одну двойную связь,
- Линолевая кислота – С17Н31СООН – имеет две двойных связи,
- Линоленовая кислота – С17Н29СООН – имеет три двойных связи.
Структурные формулы соединений, в которых присутствуют длинные углеводородный радикалы, часто изображают следующим образом:
В углеводородной цепи атомы углерода расположены не по прямой линии, а виде «змейки». Угол между двумя соседними отрезками такой «змейки» 109 градусов 28 минут. В случае двойной связи угол другой.
В структурной формуле каждая вершина такой «змейки» означает атом углерода, соединённый с двумя атомами водорода. Последний атом углерода соединён с тремя атомами водорода.
При этом сами символы углерода (С) и водорода(Н) не изображаются.
Предельные и непредельные жирные кислоты имеют в значительной степени различные свойства.
Высшие предельные кислоты – воскообразные вещества, непредельные – жидкости (напоминающие растительное масло).Натриевые и калиевые соли высших жирных кислот называют мылами.
Например:
C17H35COONa – стеарат натрия,
С
Источник: http://xn----7sbb4aandjwsmn3a8g6b.xn--p1ai/views/alchemy/theory/chemistry/organic-chemistry/carboxylic_acid.php
2.6. Характерные химические свойства кислот
Кислоты можно классифицировать исходя из разных критериев:
1) Наличие атомов кислорода в кислоте
Кислородсодержащие | Бескислородные |
H3PO4,HNO3,HNO2,H2SO4,H3PO4,H2CO3,H2CO3, HClO4 все органические кислоты (HCOOH, CH3COOH и т.д.) | HF, HCl, HBr, HI, H2S |
2) Основность кислоты
Основностью кислоты называют число «подвижных» атомов водорода в ее молекуле, способных при диссоциации отщепляться от молекулы кислоты в виде катионов водорода H+, а также замещаться на атомы металла:
одноосновные | двухосновные | трехосновные |
HBr, HCl, HNO3, HNO2, HCOOH, CH3COOH | H2SO4, H2SO3, H2CO3, H2SiO3 | H3PO4 |
3) Летучесть
Кислоты обладают различной способностью улетучиваться из водных растворов.
Летучие | Нелетучие |
H2S, HCl, CH3COOH, HCOOH | H3PO4, H2SO4, высшие карбоновые кислоты |
4) Растворимость
Растворимые | Нерастворимые |
HF, HCl, HBr, HI, H2S, H2SO3, H2SO4, HNO3, HNO2, H3PO4, H2CO3, CH3COOH, HCOOH | H2SiO3, высшие карбоновые кислоты |
5) Устойчивость
Устойчивые | Неустойчивые |
H2SO4, H3PO4, HCl, HBr, HF | H2CO3, H2SO3 |
6) Способность к диссоциации
хорошо диссоциирующие (сильные) | малодиссоциирующие (слабые) |
H2SO4, HCl, HBr, HI, HNO3, HClO4 | H2CO3, H2SO3, H2SiO3 |
7) Окисляющие свойства
слабые окислители (проявляют окислительные свойства за счет катионов водорода H+) | сильные окислители (проявляют окислительные свойства за счет кислотообразующего элемента) |
практически все кислоты кроме HNO3 и H2SO4 (конц.) | HNO3 любой концентрации, H2SO4 (обязательно концентрированная) |
1. Способность к диссоциации
Кислоты диссоциируют в водных растворах на катионы водорода и кислотные остатки. Как уже было сказано, кислоты делятся на хорошо диссоциирующие (сильные) и малодиссоциирующие (слабые).
При записи уравнения диссоциации сильных одноосновных кислот используется либо одна направленная вправо стрелка (), либо знак равенства (=), что показывает фактически необратимость такой диссоциации.
Например, уравнение диссоциации сильной соляной кислоты может быть записано двояко:
либо в таком виде: HCl = H+ + Cl—
либо в таком: HCl → H+ + Cl—
По сути направление стрелки говорит нам о том, что обратный процесс объединения катионов водорода с кислотными остатками (ассоциация) у сильных кислот практически не протекает.
В случае, если мы захотим написать уравнение диссоциации слабой одноосновной кислоты, мы должны использовать в уравнении вместо знака две стрелки . Такой знак отражает обратимость диссоциации слабых кислот — в их случае сильно выражен обратный процесс объединения катионов водорода с кислотными остатками:
CH3COOH CH3COO— + H+
Многоосновные кислоты диссоциируют ступенчато, т.е. катионы водорода от их молекул отрываются не одновременно, а по очереди. По этой причине диссоциация таких кислот выражается не одним, а несколькими уравнениями, количество которых равно основности кислоты. Например, диссоциация трехосновной фосфорной кислоты протекает в три ступени с поочередным отрывом катионов H+ :
H3PO4 H+ + H2PO4—
H2PO4— H+ + HPO42-
HPO42- H+ + PO43-
Следует отметить, что каждая следующая ступень диссоциации протекает в меньшей степени, чем предыдущая. То есть, молекулы H3PO4 диссоциируют лучше (в большей степени), чем ионы H2PO4— , которые, в свою очередь, диссоциируют лучше, чем ионы HPO42-. Связано такое явление с увеличением заряда кислотных остатков, вследствие чего возрастает прочность связи между ними и положительными ионами H+.
Из многоосновных кислот исключением является серная кислота. Поскольку данная кислота хорошо диссоциирует по обоим ступеням, допустимо записывать уравнение ее диссоциации в одну стадию:H2SO4 2H+ + SO42-
2. Взаимодействие кислот с металлами
Седьмым пунктом в классификации кислот мы указали их окислительные свойства. Было указано, что кислоты бывают слабыми окислителями и сильными окислителями. Подавляющее большинство кислот (практически все кроме H2SO4(конц.
) и HNO3) являются слабыми окислителями, так как могут проявлять свою окисляющую способность только за счет катионов водорода.
Такие кислоты могут окислить из металлов только те, которые находятся в ряду активности левее водорода, при этом в качестве продуктов образуется соль соответствующего металла и водород. Например:
H2SO4(разб.) + Zn ZnSO4 + H2
2HCl + Fe FeCl2 + H2
Что касается кислот-сильных окислителей, т.е. H2SO4 (конц.) и HNO3, то список металлов, на которые они действуют, намного шире, и в него входят как все металлы до водорода в ряду активности, так и практически все после.
То есть концентрированная серная кислота и азотная кислота любой концентрации, например, будут окислять даже такие малоактивные металлы, как медь, ртуть, серебро.
Более подробно взаимодействие азотной кислоты и серной концентрированной с металлами, а также некоторыми другими веществами из-за их специфичности будет рассмотрено отдельно в конце данной главы.
3. Взаимодействие кислот с основными и амфотерными оксидами
Кислоты реагируют с основными и амфотерными оксидами. Кремниевая кислота, поскольку является нерастворимой, в реакцию с малоактивными основными оксидами и амфотерными оксидами не вступает:
H2SO4 + ZnO ZnSO4 + H2O
6HNO3 + Fe2O3 2Fe(NO3)3 + 3H2O
H2SiO3 + FeO ≠
4. Взаимодействие кислот с основаниями и амфотерными гидроксидами
HCl + NaOH H2O + NaCl
3H2SO4 + 2Al(OH)3 Al2(SO4)3 + 6H2O
5. Взаимодействие кислот с солями
Данная реакция протекает в случае, если образуется осадок, газ либо существенно более слабая кислота, чем та, которая вступает в реакцию. Например:
H2SO4 + Ba(NO3)2 BaSO4↓ + 2HNO3
CH3COOH + Na2SO3 CH3COONa + SO2↑ + H2O
HCOONa + HCl HCOOH + NaCl
6. Специфические окислительные свойства азотной и концентрированной серной кислот
Как уже было сказано выше, азотная кислота в любой концентрации, а также серная кислота исключительно в концентрированном состоянии являются очень сильными окислителями. В частности, в отличие от остальных кислот они окисляют не только металлы, которые находятся до водорода в ряду активности, но и практически все металлы после него (кроме платины и золота).
Так, например, они способны окислить медь, серебро и ртуть.
Следует однако твердо усвоить тот факт, что ряд металлов (Fe, Cr, Al) несмотря на то, что являются довольно активными (находятся до водорода), тем не менее, не реагируют с концентрированной HNO3 и концентрированной H2SO4 без нагревания по причине явления пассивации — на поверхности таких металлов образуется защитная пленка из твердых продуктов окисления, которая не позволяет молекулами концентрированной серной и концентрированной азотной кислот проникать вглубь металла для протекания реакции. Однако, при сильном нагревании реакция все таки протекает.
В случае взаимодействия с металлами обязательными продуктами всегда являются соль соответствующего метала и используемой кислоты, а также вода. Также всегда выделяется третий продукт, формула которого зависит от многих факторов, в частности, таких, как активность металлов, а также концентрация кислот и температура проведения реакций.
Высокая окислительная способность концентрированной серной и концентрированной азотной кислот позволяет им реагировать не только практическим со всеми металлами ряда активности, но даже со многими твердыми неметаллами, в частности, с фосфором, серой, углеродом. Ниже в таблице наглядно представлены продукты взаимодействия серной и азотной кислот с металлами и неметаллами в зависимости от концентрации:
7. Восстановительные свойства бескислородных кислот
Все бескислородные кислоты (кроме HF) могут проявлять восстановительные свойства за счет химического элемента, входящего в состав аниона, при действии различных окислителей. Так, например, все галогеноводородные кислоты (кроме HF) окисляются диоксидом марганца, перманганатом калия, дихроматом калия. При этом галогенид-ионы окисляются до свободных галогенов:
4HCl + MnO2 MnCl2 + Cl2↑ + 2H2O
16HBr + 2KMnO4 2KBr + 2MnBr2 + 8H2O + 5Br2
14НI + K2Cr2O7 3I2↓ + 2Crl3 + 2KI + 7H2O
Среди всех галогеноводородных кислот наибольшей восстановительной активностью обладает иодоводородная кислота. В отличие от других галогеноводородных кислот ее могут окислить даже оксид и соли трехвалентного железа.
6HI + Fe2O3 2FeI2 + I2↓ + 3H2O
2HI + 2FeCl3 2FeCl2 + I2↓ + 2HCl
Высокой восстановительной активностью обладает также и сероводородная кислота H2S. Ее может окислить даже такой окислитель, как диоксид серы:
2H2S + SO2 3S↓+ 2H2O
Источник: https://scienceforyou.ru/teorija-dlja-podgotovki-k-egje/harakternye-himicheskie-svojstva-kislot