Окисление альдегидов

Содержание

3.6. Характерные химические свойства альдегидов, предельных карбоновых кислот, сложных эфиров

Окисление альдегидов

Альдегидами называют соединения, молекулы которых содержат карбонильную группу, соединенную с атомом водорода, т.е. общая формула альдегидов может быть записана как

где R – углеводородный радикал, который может быть разной степени насыщенности, например, предельный или ароматический.

Группу –СНО называют альдегидной.

Кетоны – органические соединения, в молекулах которых содержится карбонильная группа, соединенная с двумя углеводородными радикалами. Общую формулу кетонов можно записать как:

где R и R’ – углеводородные радикалы, например, предельные (алкилы) или ароматические.

Гидрирование альдегидов и кетонов

Альдегиды и кетоны могут быть восстановлены водородом в присутствии катализаторов и нагревании до первичных и вторичных спиртов соответственно:

Окисление альдегидов

Альдегиды легко могут быть окислены даже такими мягкими окислителями, как гидроксид меди и аммиачный раствор оксида серебра.

При нагревании гидроксида меди с альдегидом происходит исчезновение изначального голубого окрашивания реакционной смеси, при этом образуется кирпично-красный осадок оксида одновалентной меди:

В реакции с аммиачным раствором оксида серебра вместо самой карбоновой кислоты образуется ее аммонийная соль, поскольку находящийся в растворе аммиак реагирует с кислотами:

Кетоны в реакцию с гидроксидом меди (II) и аммиачным раствором оксида серебра не вступают. По этой причине эти реакции являются качественными на альдегиды. Так реакция с аммиачным раствором оксида серебра при правильной методике ее проведения приводит к образованию на внутренней поверхности реакционного сосуда характерного серебряного зеркала.

Очевидно, что если мягкие окислители могут окислить альдегиды, то само собой это могут сделать и более сильные окислители, например, перманганат калия или дихромат калия. При использовании данных окислителей в присутствии кислот образуются карбоновые кислоты:

Химические свойства карбоновых кислот

Карбоновыми кислотами называют производные углеводородов, содержащие одну или несколько карбоксильных групп.

Карбоксильная группа:

Как можно видеть, карбоксильная группа состоит из карбонильной группы –С(О)- , соединенной с гидроксильной группой –ОН.

В связи с тем, что к гидроксильной группе непосредственно прикреплена карбонильная, обладающая отрицательным индуктивным эффектом связь О-Н является более полярной, чем в спиртах и фенолах.

По этой причине карбоновые кислоты обладают заметно более выраженными, чем спирты и фенолы, кислотными свойствами. В водных растворах они проявляют свойства слабых кислот, т.е.

обратимо диссоциируют на катионы водорода (Н+) и анионы кислотных остатков:

Реакции образования солей

С образованием солей карбоновые кислоты реагируют с:

1) металлами до водорода в ряду активности:

2) аммиаком

3) основными и амфотерными оксидами:

4) основными и амфотерными гидроксидами металлов:

5) солями более слабых кислот – карбонатами и гидрокарбонатами, сульфидами и гидросульфидами, солями высших (с большим числом атомов углерода в молекуле) кислот:

Систематические и тривиальные названия некоторых кислот и их солей представлены в следующей таблице:

Формула кислотыНазвание кислоты тривиальное/систематическоеНазвание соли тривиальное/систематическое
HCOOHмуравьиная/ метановаяформиат/ метаноат
CH3COOHуксусная/ этановаяацетат/ этаноат
CH3 CH2COOHпропионовая/ пропановаяпропионат/ пропаноат
CH3 CH2 CH2COOHмасляная/ бутановаябутират/ бутаноат

Следует помнить и обратное: сильные минеральные кислоты вытесняют карбоновые кислоты из их солей как более слабые:

Реакции с участием ОН группы

Карбоновые кислоты вступают в реакцию этерификации с одноатомными и многоатомными спиртами в присутствии сильных неорганических кислот, при этом образуются сложные эфиры:

Данного типа реакции относятся к обратимым, в связи с чем с целью смещения равновесия в сторону образования сложного эфира их следует осуществлять, отгоняя более летучий сложный эфир при нагревании.

Обратный реакции этерификации процесс называют гидролизом сложного эфира:

Необратимо данная реакция протекает в присутствии щелочей, поскольку образующаяся кислота реагирует с гидроксидом металла с образованием соли:

Реакции замещения атомов водорода в углеводородном заместителе

При проведении реакций карбоновых с хлором или бромом в присутствии красного фосфора при нагревании происходит замещение атомов водорода при α-атоме углерода на атомы галогена:

В случае большей пропорции галоген/кислота может произойти и более глубокое хлорирование:

Особые химические свойства муравьиной кислоты

Молекула муравьиной кислоты, несмотря на свои малые размеры, содержит сразу две функциональные группы:

В связи с этим она проявляет не только свойства кислот, но также и свойства альдегидов:

При действии концентрированной серной кислоты муравьиная кислота разлагается на воду и угарный газ:

Источник: https://scienceforyou.ru/teorija-dlja-podgotovki-k-egje/svojstva-aldegidov-karbonovyh-kislot-jefirov

Химические свойства альдегидов и кетонов. Реакции окисления и восстановления (стр. 1 из 2)

Окисление альдегидов

Двойная связь С=О, подобно связи С=С, представляет собой комбинацию s – и p-связей (они изоэлектронны). Однако, между этими двумя двойными связями имеются существенные различия:

– C=O значительно прочнее С=С;

– энергия связи С=О (179 ккал/моль) больше, чем энергия двух связей С-О (85.5 ккал/моль), в то время как энергия связи С=С (146 ккал/моль) меньше суммы энергий двух связей С-С (82.6. ккал/моль);

– связь С=О в отличие от С=С полярна.

При этом p-связь поляризована сильнее, чем s-связь. Таким образом, атом углерода карбонильной группы является электронодефицитным центром, а кислорода – электроноизбыточным.

d+d-

Кроме тогo, карбонильная группа увеличивает кислотность атомов Н у соседнего атома С, приводя к увеличению кинетической кислотности (увеличению полярности связи С-Н из-за – I-эффекта карбонильной группы) и термодинамической кислотности (стабилизация образующегося карбаниона за счет мезомерного эффекта).

В молекулах карбонильных соединений имеется несколько реакционных центоров.

Электрофильный центр – карбонильный атом углерода, возникновение частичного положительного заряда на котором обусловлено полярностью связи С=О. Электрофильный центр участвует в реакциях нуклеофильного присоединения.

Основный центр – атом кислорода с неподеленными парами электронов. С участием основного центра осуществляется кислотный катализ в реакциях присоединения, а также в процессе енолизации. Важно отметить, что альдегиды и кетоны являются жесткими основаниями Льюиса и координируются с жесткими кислотами: H+, BF3, ZnCl2, FeCl3 и т.д.

a-СН-Кислотный центр, возникновение которого обусловлено индуктивным эффектом карбонильной группы. При участии СН-кислотного центра протекают многие реакции карбонильных соединений, в частности реакции конденсации.

Связь С¾Н в альдегидной группе разрывается в реакциях окисления.

Ненасыщенные и ароматические углеводородные радикалы, подвергающиеся атаке электрофильными или нуклеофильными реагентами.

Реакции окисления и восстановления

Реакции окисления.

По отношению к различным окислителям свойства альдегидов и кетонов сильно различаются. Большинство окислителей, включая воздух, легко окисляют альдегиды до кислот. Особенно легко окисляются ароматические альдегиды.

(75)

Реакция проходит по радикальному механизму через образование гидроперекисей. Для сохранения альдегидов от окисления атмосферным воздухом к ним прибавляют небольшие количества антиоксидантов, блокирующих свободные радикалы. В качестве антиоксидантов используют ароматические амины и фенолы.

(76)

гексаналь гексановая кислота

А. Реакция серебряного зеркала

Легкая окисляемость альдегидов используется для их качественного определения. Окисление альдегидов с помощью растворов, содержащих двухвалентную медь (реактив Фелинга) или серебро (реактив Толленса) является тестом на присутствие альдегида.

В технике эта реакция используется для серебрения зеркал и игрушек:

(77)

(78)

ванилин ванилиновая кислота

Б. Окисление кетонов

Кетоны значительно более устойчивы к окислению, чем альдегиды, т. к. рядом с карбонильной группой у них нет атома водорода. Кетоны не восстанавливают ни реактив Фелинга ни реактив Толленса. Сильные окислители, такие как перманганат калия и азотная кислота окисляют кетоны

с разрывом углеродной цепи до кислот:

Окислением циклогексанона азотной кислотой в промышленности получают адипиновую кислоту:

(79)

циклогексанон адипиновая кислота

Упр. 25. Напишите реакции окисления реагентом Толленса (а) пентаналя,

(б) циклопентанкарбальдегида, (в) 3-фенилпропаналя.

Упр.26. Предложите химические реакции, позволяющие отличить масляный альдегид (бутаналь) от метилэтилкетона.

Упр.27. Напишите формулу кетона, при окислении которого перманганатом калия образуется смесь уксусной, пропионовой, валериановой и капроновой кислот.

В. Окисление по Баеру-Виллегеру

Альдегиды и кетоны окисляются надкислотами (окисление по Баеру-Виллегеру), например:

(89)

ацетофенон фенилацетат

Из двух заместителей карбонильной группы к кислороду прейдет наиболее склонный к миграции. Склонность к миграции уменьшается в следующем ряду:

Н > Ph > 3o алкил > 2o алкил > 1o алкил > метил.

Механизм реакции Баера-Виллегера:

(М 10)

Упр.28. Напишите реакции окисление по Баеру-Виллегеру (а) бензальдегида,

(б) циклогексанона, (в) 3-метил-2-бутанона.

Упр.29. Напишите стадии получения глицеринового альдегида (Г):

Реакции восстановления.

Альдегиды и кетоны сравнительно легко гидрируются в присутствии Pt, Pd, Ni и других катализаторов гидрирования:

Эта реакция находит промышленное применение для получения первичных и вторичных спиртов из доступных альдегидов и кетонов:

(12-20)

(12-21)

изомасляный альдегид изобутиловый спирт

А. Восстановление боргидридом натрия

В лабораторных условиях для восстановления альдегидов и кетонов используют боргидрид натрия NaBH4 или реже алюмогидрид лития LiAlH4. Реакции карбонилсодержащих соединений с гидридами металлов напоминают их реакции с металлорганическими соединениями:

Для восстановления в спирты альдегидов и кетонов лучше всего пользоваться боргидридом натрия. Эту реакцию можно проводить в спирте или даже в воде.

Реакция восстановления циклогексанона

(12-23)

проходит по следующему механизму

(12-м 2)

В качестве восстановителя может использоваться и изопропиловый спирт в присутствии твердой щелочи при нагревании, окисляющийся при этом в ацетон:

Восстановление карбонильной группы альдегидов и кетонов до метиленовой тремя методами нами уже рассмотрено:

· восстановление по Кижнеру-Вольфу, десульфурирование дитиоацеталей и дитиокеталей;

· восстановлением по Клеменсену.

Восстановление по Клеменсену проводится в сильно кислой среде и может использоваться для соединений неустойчивых в щелочных средах.

Восстановление по Кижнеру-Вольфу проводится наоборот в сильно щелочной среде и применимо для соединений неустойчивых в кислой среде.

Восстановление дитиоацеталей осуществляется в нейтральной среде и может быть использовано для соединений неустойчивых и в кислой и в основной средах.

Реакции окисления-восстановления

Алкоксиды первичных и вторичных спиртов могут передавать гидрид анион к карбонильным группам по схеме:

Или

При этом карбонильная группа превращается в спиртовую, а спиртовая в карбонильную, т.е. альдегид или кетон восстанавливается в спирт, а спирт окисляется в альдегид или кетон. Наиболее распространенным восстановителем является изопропиловый спирт. Алкоголяты можно использовать лишь в качестве катализаторов.

А. Восстановление кетонов изопропиловым спиртом

Мы показали, что в качестве катализатора можно использовать твердую щелочь.

(12-24)

адамантанон 2-адамантанол

Б. Восстановление по Меервейну и Пондорфу

Меервейн и Пондорф ранее предложили использовать в качестве катализатора изопропилат алюминия.

Реакцию можно использовать и для окисления спиртов в альдегиды и кетоны. В качестве окислителя используется ацетон.

В. Реакция Канниццаро

В присутствии концентрированной щелочи альдегиды, не содержащие в a-положении к карбонильной группе атом водорода, превращаются в равномолекулярную смесь кислот и спиртов с тем же числом атомов углерода (реакция Канниццацаро):

(90)

бензальдегид бензоат натрия бензиловый спирт

Источник: http://MirZnanii.com/a/325008/khimicheskie-svoystva-aldegidov-i-ketonov-reaktsii-okisleniya-i-vosstanovleniya

Альдегиды и кетоны

Окисление альдегидов
статьи

Альдегиды и кетоны – органические соединения, содержащие фрагмент >C=O (углерод, связанный двойной связью с кислородом, его называют карбонильным). У альдегидов карбонильный углерод соединен с атомом Н и органической группой R (общая формула RHC=O), а в кетонах – с двумя органическими группами (общая формула R2С=О).

Номенклатура альдегидов и кетонов. Группу –(Н)С=О называют альдегидной, для связывания с органическими группами у нее есть всего одна свободная валентность, это позволяет ей находится только на конце углеводородной цепи (но не в середине).

При составлении названия альдегида указывается название соответствующего углеводорода, к которому добавляется суффикс «аль», например, метаналь Н2С=О, этаналь Н3СС(Н)=О, пропаналь Н3ССН2С(Н)=О.

В более сложных случаях углеродную цепь группы R нумеруют, начиная с карбонильного углерода, затем с помощью числовых индексов указывают положение функциональных групп и различных заместителей.

Рис. 1. НОМЕНКЛАТУРА АЛЬДЕГИДОВ. Замещающие и функциональные группы, а также соответствующие им цифровые индексы выделены различающимися цветами.

Для некоторых альдегидов часто используют тривиальные (упрощенные) названия, сложившиеся исторически, например, формальдегид Н2С=О, ацетальдегид Н3СС(Н)=О, кротоновый альдегид СН3СН=CHC(H)=O.

В отличие от альдегидной, кетонная группа >C=O может находиться также в середине углеводородной цепи, поэтому в простых случаях указывают названия органических групп (упоминая их в порядке увеличения) и добавляют слово «кетон»: диметилкетон CH3–CO–CH3, метилэтилкетон CH3CH2–CO–CH3. В более сложных случаях положение кетонной группы в углеводородной цепи указывают цифровым индексом, добавляя суффикс «он». Нумерацию углеводородной цепи начинают с того конца, который находится ближе к кетонной группе (рис. 2).

Рис. 2. НОМЕНКЛАТУРА КЕТОНОВ. Замещающие и функциональные группы и соответствующие им цифровые индексы выделены различными цветами.

Для простейшего кетона CH3–CO–CH3 принято тривиальное название – ацетон.

Получение альдегидов и кетонов

Наиболее универсальный способ – окисление спиртов, при этом из первичных спиртов образуются альдегиды, а из вторичных – кетоны (рис. 9А и Б). Это реакции, обратные реакциям на рис. 7А и Б. Реакция поворачивает «вспять», если изменен действующий реагент (окислитель вместо восстановителя) и катализатор, при окислении спиртов эффективен медный катализатор.

В промышленности ацетальдегид получают окислением этилена (рис. 9В), на промежуточной стадии образуется спирт, у которого ОН-группа «примыкает» к двойной связи (виниловый спирт), такие спирты неустойчивы и сразу изомеризуются в карбонильные соединения. Другой способ – каталитическая гидратация ацетилена (рис.

9Г), промежуточное соединение – виниловый спирт. Если вместо ацетилена взять метилацетилен, то получится ацетон (рис. 9Д). Промышленный способ получения ацетона – окислением кумола. Ароматические кетоны, например, ацетофенон, получают каталитическим присоединением ацетильной группы к ароматическому ядру (рис. 9Е).

Применение альдегидов и кетонов

Формальдегид Н2С=О (его водный раствор называют формалином) используют как дубитель кожи и консервант биологических препаратов.

Ацетон (СН3)2С=О – широко применяемый экстрагент и растворитель лаков и эмалей.

Ароматический кетон бензофенон (С6Н5)2С=О с запахом герани, используется в парфюмерных композициях и для ароматизации мыла.

Некоторые из альдегидов были сначала найдены в составе эфирных масел растений, а позже искусственно синтезированы.

Алифатический альдегид СН3(СН2)7С(Н)=О (тривиальное название – пеларгоновый альдегид) содержится в эфирных маслах цитрусовых растений, обладает запахом апельсина, его используют как пищевой ароматизатор.

Ароматический альдегид ванилин (рис. 10) содержится в плодах тропического растения ванили, сейчас чаще используется синтетический ванилин – широко известная ароматизирующая добавка в кондитерские изделия (рис. 10).

Рис. 10. ВАНИЛИН

Бензальдегид С6Н5С(Н)=О с запахом горького миндаля содержится в миндальном масле и в эфирном масле эвкалипта. Синтетический бензальдегид используется в пищевых ароматических эссенциях и в парфюмерных композициях.

Бензофенон (С6Н5)2С=О и его производные способны поглощать УФ-лучи, что определило их применение в кремах и лосьонах от загара, кроме того, некоторые производные бензофенона обладают противомикробной активностью и применяются в качестве консервантов. Бензофенон обладает приятным запахом герани, и потому его используют в парфюмерных композициях и для ароматизации мыла.

Способность альдегидов и кетоновучаствовать в различных превращениях определила их основное применение в качестве исходных соединений для синтеза разнообразных органических веществ: спиртов, карбоновых кислот и их ангидридов, лекарственных препаратов (уротропин), полимерных продуктов (фенолоформальдегидные смолы, полиформальдегид), в производстве всевозможных душистых веществ (на основе бензальдегида) и красителей.

Михаил Левицкий

Источник: https://www.krugosvet.ru/enc/himiya/aldegidy-i-ketony

Окисление альдегидов: процесс, конечный продукт

Окисление альдегидов

Альдегидами называют органические вещества, относящиеся к карбонильным соединениям, содержащим функциональную группу –СОН, которая именуется карбонильной группой.

В зависимости от характера углеводородного скелета молекулы альдегиды бывают предельными, непредельными и ароматическими. Их молекулы могут также включать атомы галогенов или дополнительные функциональные группы. Общая формула насыщенных альдегидов имеет вид CnH2nO. В соответствии с номенклатурой ИЮПАК названия их оканчиваются суффиксом –аль.

Окисление альдегидов имеет важное значение в промышленности, поскольку они довольно легко превращаются в карбоновые кислоты. Окислителями в этом случае могут послужить гидроксид меди, оксид серебра или даже кислород воздуха.

Строение карбонильной группы

Электронное строение двойной связи в группе С=О характеризуется образованием одной σ-связи и еще одной π-связи. Атом С находится в состоянии sp2-гибридизации, молекула плоского строения с валентными углами между связями около 1200.

Отличие двойной связи в этой функциональной группе заключено в том, что она расположена между атомом углерода и весьма электроотрицательным атомом кислорода.

В результате электроны притянуты к атому О, а значит, эта связь очень сильно поляризована.

в альдегидной группе такой поляризованной двойной связи можно назвать главной причиной высокой реакционноспособности альдегидов. Для альдегидов наиболее характерны реакции присоединения атомов или их групп по С=О связи.

И легче всего протекают реакции нуклеофильного присоединения. Также для альдегидов типичны реакции с участием атомов Н из функциональной группы альдегидов. Из-за электроноакцепторного влияния группы С=О происходит повышение полярности связи.

Это в свою очередь является причиной относительно легкого окисления альдегидов.

Формальдегид (муравьиный альдегид или метаналь) СН2О является газообразным веществом с весьма острым запахом, который получают обычно пропусканием смеси паров метанола с воздухом через раскаленную сетку из медной или серебряной сетки. Его 40%-й водный раствор называется формалином.

Формальдегид легко вступает в реакции, многие из которых лежат в основе промышленного синтеза целого ряда важных веществ. Его используют и для получения изопренового каучука, пентаэритрита, многих лекарственных веществ, различных красителей, для дубления кожи, в качестве дезинфицирующего и дезодорирующего средства.

Формальдегид довольно токсичен, его ПДК в воздухе составляет 0,001 мг/л.

Ацетальдегид (уксусный альдегид, этаналь) СН3СОН является бесцветной жидкостью с удушающим запахом, который при разбавлении его водой приобретает фруктовый аромат. Ацетальдегид обладает всеми основными свойствами альдегидов. Окислением уксусного альдегида производят огромные объемы уксусной кислоты и уксусного ангидрида, разнообразных фармацевтических препаратов.

Акролеин (пропеналь) CH2=CH-СОН, простейший ненасыщенный альдегид является бесцветной легколетучей жидкостью. Его пары сильно раздражают слизистые глаз и верхних дыхательных путей. Очень ядовит, ПДК его содержания в воздухе составляет 0,7 мг/м3. Пропеналь – промежуточный продукт синтеза некоторых полимеров, необходим в производстве отдельных лекарственных препаратов.

Бензальдегид (бензойный альдегид) С6Н5СОН является бесцветной желтеющей при хранении жидкостью с ароматом горького миндаля. Он довольно быстро окисляется воздухом до бензойной кислоты.

Содержится в эфирных маслах растений (нероли, пачулей), а в виде глюкозида – в ядрах косточек горького миндаля, вишни, абрикоса и персика.

Как душистое вещество его применяют в парфюмерии, в виде компонента пищевых эссенций, как сырье для синтеза других душистых веществ (коричного альдегида, жасминальдегида).

Окисление альдегидов оксидом серебра является самой показательной качественной реакцией на соответствующую форму функциональной группы. Свое название эта реакция получила благодаря тонкому серебряному налету на стенках пробирки, образующемуся в ходе этой реакции.

Суть ее заключается во взаимодействии альдегида R-СОН с аммиачным раствором оксида серебра(I), который представляет собой растворимое комплексное соединение [Ag(NH3)2]OH и носит название реактив Толленса.

Реакцию осуществляют при температурах, близких к температуре кипения воды (80–100 °С).

При этом происходит окисление альдегидов до соответствующих им карбоновых кислот, а окислитель восстанавливается до металлического серебра, выпадающего в осадок.

Приготовление реактивов

Для качественного определения группы -СОН в альдегидах сначала готовят комплексное соединение серебра. Для этого в пробирку наливают немного раствора аммиака (гидроксида аммония) в воде и следом небольшое количество нитрата серебра. При этом образующийся осадок оксида серебра тут же исчезает:

2AgNO3 + 2NH3 + Н2О -> Ag2O↓ + 2NH4NO3

Ag2O + 4NΗ3 + Η2О -> 2[Ag(NΗ3)2]ОΗ

Более надежные результаты дает реактив Толленса, приготовленный с добавлением щелочи.

Для этого 1 г AgNO3 растворяют в 10 г дистиллированной воды и добавляют равный объем концентрированного гидроксида натрия.

В результате выпадает осадок Ag2O, который исчезает при добавлении концентрированного раствора гидроксида аммония. Использовать для проведения реакции нужно только свежеприготовленный реактив.

Механизм реакции

Реакции серебряного зеркала соответствует уравнение:

2[Ag(NΗ3)2]OΗ + НСОΗ -> 2Ag↓ + ΗCOONΗ4 + 3NΗ3 + Н2О

Стоит отметить, что для альдегидов такое взаимодействие изучено недостаточно. Механизм данной реакции неизвестен, но предполагается радикальный или же ионный вариант окисления. По гидроксиду диамминсеребра вероятнее всего реализуется присоединение с образованием серебряной соли диола, от которого затем отщепляется серебро с образованием карбоновой кислоты.

Для успешного проведения опыта чрезвычайно важна чистота используемой посуды. Связано это с тем, что образующиеся в ходе опыта коллоидные частицы серебра должны прицепиться к поверхности стекла, создав зеркальную поверхность. В присутствии малейших загрязнений оно будет выпадать в виде серого хлопьевидного осадка.

Для очистки емкости следует использовать растворы щелочей. Так, для этих целей можно взять раствор NaOH, который нужно смыть большим объемом дистиллированной водой. На поверхности стекла не должно присутствовать жировых следов и механических частиц.

Окисление гидроксидом меди

Реакция окисления альдегидов гидроксидом меди (II) также довольно эффектна и эффективна в определении типа функциональной группы. Протекает она при температуре соответствующей кипячению реакционной смеси.

При этом альдегиды восстанавливают двухвалентную медь в составе реактива Фелинга (свежеприготовленный аммиачный раствор Cu(OH)2) до одновалентной.

Сами же они окисляются по причине внедрения атома кислорода по связи С-Η (степень окисления С изменяется с +1 на +3).

Визуально за ходом реакции можно проследить по изменению окраски смеси растворов. Голубоватый осадок гидроксида меди постепенно превращается желтый, соответствующий гидроксиду меди одновалентной и дальнейшее появление яркого красного осадка Cu2O.

Этому процессу соответствует уравнение реакции:

R-СОН + Cu2+ + NaOH + Н2О -> R-COONa + Cu2O + 4Н+

Действие реактивом Джонса

Стоит отметить, что на альдегиды такой реактив действует наилучшим образом.

В этом случае окисление не требует нагревания и проводится при температуре 0-20 °С в течение довольно короткого отрезка времени, а выход продуктов составляет больше 80%.

Главным недостатком реагента Джонса состоит в отсутствии высокой избирательности в отношении других функциональных групп, да к тому же кислая среда порой приводит к изомеризации или деструкции.

Реагент Джонса представляет собой раствор оксида хрома (VI) в разбавленной серной кислоте и ацетоне. Его также можно получить из дихромата натрия. При окислении альдегидов образуются под действием этого реактива карбоновые кислоты.

Промышленное окисление кислородом

Окисление ацетальдегида в промышленности осуществляют воздействием кислорода в присутствии катализаторов – ионов кобальта или марганца. Сначала образуется надуксусная кислота:

СН3-СОН + О2 –> СН3-СОООН

Она в свою очередь взаимодействует со второй молекулой уксусного альдегида и через перекисное соединение дает две молекулы уксусной кислоты:

СН3-СОООН + СН3-СОН –> 2СН3-СООН

Окисление ведется при температуре 60-70 °С и давлении 2·105 Па.

Взаимодействие с раствором йода

Для окисления альдегидных групп иногда применяется раствор йода в присутствии щелочи. Особое значение этот реактив имеет в процессе окисления углеводов, поскольку действует очень избирательно. Так под его влиянием D-глюкоза превращается в D-глюконовую кислоту.

Йод в присутствии щелочей образует гипойодид (весьма сильный окислитель): I2 + 2NaOΗ –> NaIO + NaI + Н2О.

Под действием гипойодида формальдегид превращается в метановую кислоту: ΗСОΗ + NaIO + NaOΗ –> ΗCOONa + NaI + Н2О.

Окисление альдегидов йодом используют в аналитической химии для определения количественного их содержания в растворах.

Окисление диоксидом селена

В отличие от предыдущих реактивов, под действием диоксида селена альдегиды превращаются в дикарбонильные соединения, а из формальдегида образуется глиоксаль. Если рядом с карбонилом расположены метиленовые или метильные группы, то они могут превращаться в карбонильные. Как растворитель для SeO2 обычно используют диоксан, этанол или ксилол.

По одной из методик реакцию проводят в трехгорлой колбе, соединенной с мешалкой, термометром и обратным холодильником. К исходному веществу, взятому в количестве 0,25 моль, каплями прибавляют раствор 0,25 моль диоксида селена в 180 мл диоксана, а также 12 мл Н2О.

Температура не должна превышать 20 °C (при необходимости колбу охлаждают). После этого при постоянном перемешивании раствор кипятят в течении 6 часов. Далее горячий раствор фильтруют для отделения селена и промывают осадок диоксаном. После вакуумной отгонки растворителя остаток фракционируют.

Основную фракцию отбирают в широком температурном интервале (20-30 °C) и повторно ректифицируют.

Аутоокисление альдегидов

Под действием кислорода воздуха при комнатной температуре окисление альдегидов происходит очень медленно. Главными продуктами этих реакций являются соответствующие карбоновые кислоты. Механизм аутоокисления родственен промышленному окислению этаналя до уксусной кислоты. Одним из промежуточных продуктов является надкислота, которая взаимодействует с еще одной молекулой альдегида.

Благодаря тому, что этот тип реакций ускоряется под действием света, перекисей, и следов тяжелых металлов, можно сделать вывод о ее радикальном механизме. Формальдегид в водных растворах значительно хуже своих собратьев окисляется воздухом, из-за того, что существует в них в виде гидратированного метиленгликоля.

Окисление альдегидов перманганатом калия

Наиболее успешно эта реакция происходит в кислой среде. Визуально оценить ее прохождение можно по потере интенсивности и полному обесцвечиванию розовой окраски раствора марганцовки.

Реакция проходит при комнатной температуре и нормальном давлении, поэтому она не требует особых условий. Достаточно в пробирку налить 2 мл формальдегида и 1 мл подкисленного серной кислотой раствора перманганата калия.

Пробирку с раствором нужно осторожно встряхнуть для перемешивания реагентов:

5СН3-СОН + 2KMnO4 + 3H2SO4 = 5СН3-СООН + 2MnSO4 + K2SO4 + 3Н2О

Если ту же реакцию вести при повышенных температурах, то метаналь легко окисляется до углекислого газа:

5СН3-СОН + 4KMnO4 + 6H2SO4 = 5СО2 + 4MnSO4 + 2K2SO4 + 11Н2О

Источник: http://fb.ru/article/377263/okislenie-aldegidov-protsess-konechnyiy-produkt

Окисление альдегидов и кетонов

Окисление альдегидов

Альдегиды окисляются значительно легче, чем кетоны. При окислении альдегидов образуются соответствующие карбоновые кислоты, а окисление кетонов обычными окислителями чаще всего проходит деструктивно, с разрывом связей в углеродной цепи и дает смесь продуктов, принадлежащих к разным классам.

Из общей закономерности выбивается муравьиный альдегид, который при окислении как правило превращается не в карбоновую кислоту, а в оксид углерода (IV).

$HCOH = CO_2 + H_2O$.

Для окисления альдегидов используют щелочной или нейтральный раствор $KMnO_4$, сернокислый раствор $K_2Cr_2O_7$ или $CrO_3$, а для окисления кетонов – пероксидные соединения, содержащие перекисные мостиковые группы $-O-O-$, например, пероксиуксусную кислоту $CH_3-C(O)-OOH$, мононадсерную кислоту $H_2SO_5$ и особенно трифторпероксиуксусную кислоту $CF_2-C(O)-OOH$.

Альдегиды окисляются значительно легче, чем первичные и вторичные спирты. Альдегиды окисляются до карбоновых кислот при действии многих окислителей: азотной кислоты, соединений хрома (VI), щелочного раствора йода, перекиси водорода, оксида серебра, перманаганата калия, гидроксида меди.

Ничего непонятно?

Попробуй обратиться за помощью к преподавателям

Альдегиды значительно менее доступны, чем соответствующие кислоты. Исключение составляют альдегиды, которые добывают из природных соединений. В связи с этим препаративное значение имеет в первую очередь окисление именно этих альдегидов.

Окисление перманганатом калия и оксидом серебра

Очень широко используют окисление перманганатом калия в щелочной среде.

Но этот метод можно использовать только для альдегидов, которые в силу своего строения, не могут вступать в конденсации типа альдольной или кротоновой, то есть тех, которые не содержат атомов водорода в $\alpha$-положении к альдегидной группе. Например, из анисового альдегида синтезируют анисовую кислоту с выходом 85%:

Рисунок 1.

Ароматические альдегиды, содержащие чувствительные к действию других окислителей группы, хорошо превращаются в соответствующие кислоты при действии оксида серебра в щелочной среде. Так, например, ванилин окисляется до ванилиновой кислоты:

Рисунок 2.

Окисление азотной кислотой

Окисление альдегидов азотной кислотой различной концентрации можно использовать для получения карбоновых кислот как алифатического, так и ароматического рядов. Например, окисление $\beta$-хлоропропионового альдегида дымящейся азотной кислотой приводит к образованию $\beta$-хлоропропионовой кислоты с выходом 70%:

Рисунок 3.

Аналогично с хлоральгидрату получают трихлоруксусную кислоту с выходом 55%.

Применяя менее концентрированную 25%-ную азотную кислоту можно окислять альдегидную группу в присутствии вторичной спиртовой группы. Этим методом из молочного альдегида получают молочную кислоту:

Рисунок 4.

Стоит отметить, что первичные спиртовые группы в этих условиях окисляются до альдегидных.

Окисление другими окислителями

Особенностью альдегидов является их способность окисляться кислородом воздуха – т.н. аутоокисление альдегидов, которое будет рассмотрено в отдельном разделе. Эта реакция происходит свободнорадикальным механизмом. Например, окисление бензальдегида приводит к бензойной кислоте из-за образования промежуточного соединения – надбензойной кислоты.

Принципиально иным путем происходит окисление альдегидов, содержащие алкильные фрагменты, диоксидом селена ($SeO_2$). В этом случае происходит окисление метильной или метиленовой группы, которая находится рядом с альдегидной, а альдегидная группа не затрагивается. Например, уксусный альдегид при действии диоксида селена в уксусной кислоте образует глиоксаль:

Рисунок 5.

Качественные реакции на альдегидную оксогруппу основанные на ее окислении

Альдегиды легко окисляются в присутствии многих окислителей в соответствующие кислот. Так, широко используют для идентификации альдегидов реакции их окисления под действием гидроксида меди $Cu(OH)_2$ и других окислителей.

Качественные реакции на альдегидную оксогруппу базируются на восстановительной способности альдегидов. Кетоны в такие реакции не вступают. Существует несколько известных качественных реакций, в которых применяются различные качественные реагенты:

  1. Реактив Толленса – оксид одновалентного серебра в виде аммиачного комплекса $[Ag(NH_3)_2]ОН$ дает наглядную реакцию “серебряного зеркала”:

    Рисунок 6.

    Реактив Толленса не является специфическим реагентом только на альдегиды, он окисляет соединения и некоторых других классов – многоатомные фенолы, аминофенолы, ароматические амины, гидроксикетоны, углеводы с альдегидными оксогруппу.

  2. Реактив Фелинга или фелингова жидкость – комплекс гидроксида меди (II) со смешанной калиево-натриевой солью винной кислоты (тартратом натрия-калия или сегнетовой солью).

    Рисунок 7.

    При действии реактивом Фелинга на альдегиды образуется красный осадок $Cu_2O$ – реакция “медного зеркала”.

    Рисунок 8.

    Для упрощения записи схему реакции “медного зеркала” при взаимодействии альдегидов с реактивом Фелинга записывают так:

    Рисунок 9.

    Фелингова жидкость подобно реактиву Толенса тоже может окислять соединения других классов, но в отличие от него не взаимодействует с ароматическими альдегидами.

  3. Реактив Бенедикта – цитратный комплекс меди (II), образованный гидроксидом меди (II) с лимонной кислотой ($HOOC-CH_2-CH(OH)-CH_2-COOH$) – еще одна разновидность реакции “медного зеркала”:

    Рисунок 10.

Источник: https://spravochnick.ru/himiya/aldegidy_i_ketony/okislenie_aldegidov_i_ketonov/

Окислительно-восстановительные реакции с участием органических веществ

Окисление альдегидов

В окислительно-восстановительных реакциях органические вещества чаще проявляют свойства восстановителей, а сами окисляются.

Легкость окисления органических соединений зависит от доступности электронов при взаимодействии с окислителем.

Все известные факторы, вызывающие увеличение электронной плотности в молекулах органических соединений (например, положительные индуктивный и мезомерные эффекты), будут повышать их способность к окислению и наоборот.

Склонность органических соединений к окислению возрастает с ростом их нуклеофильности, что соответствует следующим рядам:

Рост нуклеофильности в ряду

Рассмотрим окислительно-восстановительные реакции представителей важнейших классов органических веществ с некоторыми неорганическими окислителями.

Окисление алкенов

При мягком окислении алкены превращаются в гликоли (двухатомные спирты). Атомы-восстановители в этих реакциях – атомы углерода, связанные двойной связью.

Реакция с раствором перманганата калия протекает в нейтральной или слабо щелочной среде следующим образом:

3C2H4 + 2KMnO4 + 4H2O → 3CH2OH–CH2OH + 2MnO2 + 2KOH

В более жестких условиях окисление приводит к разрыву углеродной цепи по двойной связи и образованию двух кислот (в сильно щелочной среде – двух солей) или кислоты и диоксида углерода (в сильно щелочной среде – соли и карбоната):

1) 5CH3CH=CHCH2CH3 + 8KMnO4 + 12H2SO4 → 5CH3COOH + 5C2H5COOH + 8MnSO4 + 4K2SO4 + 17H2O

2) 5CH3CH=CH2 + 10KMnO4 + 15H2SO4 → 5CH3COOH + 5CO2 + 10MnSO4 + 5K2SO4 + 20H2O

3) CH3CH=CHCH2CH3 + 8KMnO4 + 10KOH → CH3COOK + C2H5COOK + 6H2O + 8K2MnO4

4) CH3CH=CH2 + 10KMnO4 + 13KOH → CH3COOK + K2CO3 + 8H2O + 10K2MnO4

Дихромат калия в сернокислотной среде окисляет алкены аналогично реакциям 1 и 2.

При окислении алкенов, в которых атомы углерода при двойной связи содержат по два углеродных радикала, происходит образование двух кетонов:

Окисление алкинов

Алкины  окисляются в несколько более жестких условиях, чем алкены, поэтому они обычно окисляются с разрывом углеродной цепи по тройной связи.

Как и в случае алкенов, атомы-восстановители здесь – атомы углерода, связанные  кратной связью. В результате реакций образуются кислоты и диоксид углерода.

Окисление может быть проведено перманганатом или дихроматом калия в кислотной среде, например:

5CH3C≡CH + 8KMnO4 + 12H2SO4 → 5CH3COOH + 5CO2 + 8MnSO4 + 4K2SO4 + 12H2O

Ацетилен может быть окислен перманганатом калия в нейтральной среде до оксалата калия:

3CH≡CH +8KMnO4→ 3KOOC –COOK +8MnO2 +2КОН +2Н2О

В кислотной среде окисление идет до щавелевой кислоты или углекислого газа:

5CH≡CH +8KMnO4 +12H2SO4 → 5HOOC –COOH +8MnSO4 +4К2SO4 +12Н2О
CH≡CH + 2KMnO4 +3H2SO4 → 2CO2 + 2MnSO4 + 4H2O + K2SO4

Окисление гомологов бензола

Бензол не окисляется даже в довольно жестких условиях. Гомологи бензола могут быть окислены раствором перманганата калия в нейтральной среде до бензоата калия:

C6H5CH3 +2KMnO4 →  C6H5COOK + 2MnO2 + KOH + H2O

C6H5CH2CH3 + 4KMnO4 → C6H5COOK + K2CO3 + 2H2O + 4MnO2 + KOH

Окисление гомологов бензола дихроматом или перманганатом калия в кислотной среде приводит к образованию бензойной кислоты.

5С6Н5СН3+6КMnO4+9 H2SO4→ 5С6Н5СООН+6MnSO4 +3K2SO4 + 14H2O

5C6H5–C2H5 + 12KMnO4 + 18H2SO4  → 5C6H5COOH + 5CO2 + 12MnSO4 + 6K2SO4 + 28H2O

Окисление спиртов

Непосредственным продуктом окисления первичных спиртов являются альдегиды, а вторичных – кетоны.

Образующиеся при окислении спиртов альдегиды легко окисляются до кислот, поэтому альдегиды из первичных спиртов получают окислением дихроматом калия в кислотной среде при температуре кипения альдегида. Испаряясь, альдегиды не успевают окислиться.

3C2H5OH + K2Cr2O7 + 4H2SO4 → 3CH3CHO + K2SO4 + Cr2(SO4)3 + 7H2O

С избытком окислителя (KMnO4, K2Cr2O7) в любой среде первичные спирты окисляются до карбоновых кислот или их солей, а вторичные – до кетонов.

5C2H5OH + 4KMnO4 + 6H2SO4 → 5CH3COOH + 4MnSO4 + 2K2SO4 + 11H2O

3CH3–CH2OH + 2K2Cr2O7 + 8H2SO4 → 3CH3–COOH + 2K2SO4 + 2Cr2(SO4)3 + 11H2O

Третичные спирты в этих условиях не окисляются, а метиловый спирт окисляется до углекислого газа.

Двухатомный спирт, этиленгликоль HOCH2–CH2OH, при нагревании в кислой среде с раствором KMnO4 или K2Cr2O7 легко окисляется до щавелевой кислоты, а в нейтральной – до оксалата калия.

5СН2(ОН) – СН2(ОН) + 8КMnO4+12H2SO4→ 5HOOC –COOH +8MnSO4 +4К2SO4 +22Н2О

3СН2(ОН) – СН2(ОН) + 8КMnO4→ 3KOOC –COOK +8MnO2 +2КОН +8Н2О

Окисление альдегидов и кетонов

Альдегиды – довольно сильные восстановители, и поэтому легко окисляются различными окислителями, например: KMnO4,  K2Cr2O7,  [Ag(NH3)2]OH,  Cu(OH)2. Все реакции идут при нагревании:

3CH3CHO + 2KMnO4 → CH3COOH + 2CH3COOK + 2MnO2 + H2O

3CH3CHO + K2Cr2O7 + 4H2SO4 → 3CH3COOH + Cr2(SO4)3 + 7H2O

CH3CHO + 2KMnO4 + 3KOH → CH3COOK + 2K2MnO4 + 2H2O

5CH3CHO + 2KMnO4 + 3H2SO4 → 5CH3COOH + 2MnSO4 + K2SO4 + 3H2O

CH3CHO + Br2 + 3NaOH → CH3COONa + 2NaBr + 2H2O

реакция «серебряного зеркала»

C аммиачным раствором оксида серебра альдегиды окисляются до карбоновых кислот которые в аммиачном растворе дают соли аммония (реакция «серебрянного зеркала»):

CH3CH=O + 2[Ag(NH3)2]OH → CH3COONH4 + 2Ag + H2O + 3NH3

CH3–CH=O + 2Cu(OH)2 → CH3COOH + Cu2O + 2H2O

Муравьиный альдегид (формальдегид) окисляется, как правило, до углекислого газа:

5HCOH + 4KMnO4(изб) + 6H2SO4 → 4MnSO4 + 2K2SO4 + 5CO2 + 11H2O

3СН2О + 2K2Cr2O7 + 8H2SO4 → 3CO2 +2K2SO4 + 2Cr2(SO4)3 + 11H2O

HCHO + 4[Ag(NH3)2]OH → (NH4)2CO3 + 4Ag↓ + 2H2O + 6NH3

HCOH + 4Cu(OH)2 → CO2 + 2Cu2O↓+ 5H2O

Кетоны окисляются в жестких условия сильными окислителями с разрывом связей С-С и дают смеси кислот:

Карбоновые кислоты. Среди кислот сильными восстановительными свойствами обладают муравьиная и щавелевая, которые окисляются до углекислого газа.

НСООН + HgCl2 =CO2 + Hg + 2HCl

HCOOH+ Cl2 = CO2 +2HCl

HOOC-COOH+ Cl2 =2CO2 +2HCl

Муравьиная кислота, кроме кислотных свойств, проявляет также некоторые свойства альдегидов, в частности, восстановительные. При этом она окисляется до углекислого газа. Например:

2KMnO4 + 5HCOOH + 3H2SO4 → K2SO4 + 2MnSO4 + 5CO2↑ + 8H2O

При нагревании с сильными водоотнимающими средствами (H2SO4 (конц.) или P4O10) разлагается:

HCOOH →(t) CO↑ + H2O

Окисление фенолов:

Источник: http://himege.ru/okislitelno-vosstanovitelnye-reakcii-s-uchastiem-organicheskix-veshhestv/

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.

    ×
    Рекомендуем посмотреть