Строение атома углерода

Углерод — характеристика элемента и химические свойства

Строение атома углерода

Характеристика углерода. Свойства простых веществ и соединений

Углерод (С) – типичный неметалл; в периодической системе находится в 2-м периоде IV группе, главной подгруппе. Порядковый номер 6, Ar = 12,011 а.е.м., заряд ядра +6.

Физические свойства: углерод образует множество аллотропных модификаций: алмаз – одно из самых твердых веществ, графит, уголь, сажа.

Атом углерода имеет 6 электронов: 1s22s22p2. Последние два электрона располагаются на отдельных р-орбиталях и являются неспаренными. В принципе, эта пара могла бы занимать одну орбиталь, но в таком случае сильно возрастает межэлектронное отталкивание. По этой причине один из них занимает 2рх, а другой, либо 2ру, либо 2рz-орбитали.

Различие энергии s- и р-подуровней внешнего слоя невелико, поэтому атом довольно легко переходит в возбужденное состояние, при котором один из двух электронов с 2s-орбитали переходит на свободную 2р.

Возникает валентное состояние, имеющее конфигурацию 1s22s12px12py12pz1.

Именно такое состояние атома углерода характерно для решетки алмаза — тетраэдрическое пространственное расположение гибридных орбиталей, одинаковая длина и энергия связей.

Это явление, как известно, называют sp3-гибридизацией, а возникающие функции – sp3-гибридными.  Образование четырех sp3-cвязeй обеспечивает атому углерода более устойчивое состояние, чем три р—р- и одна s—s-связи.

Помимо sp3-гибридизации у атома углерода наблюдается также sp2— и sp-гибридизация. В первом случае возникает взаимное наложение s- и двух р-орбиталей. Образуются три равнозначные sp2— гибридных орбитали, расположенные в одной плоскости под углом 120° друг к другу.

Третья орбиталь р неизменна и направлена перпендикулярно плоскости sp2.

При sp-гибридизации происходит наложение орбиталей s и р. Между двумя образующимися равноценными гибридными орбиталями возникает угол 180°, при этом две р-орбитали у каждого из атомов остаются неизменными.

Аллотрорпия углерода. Алмаз и графит

В кристалле графита атомы углерода расположены в параллельных плоскостях, занимая в них вершины правильных шестиугольников. Каждый из атомов углерода связан с тремя соседними sp2-гибридными связями. Между параллельными плоскостями связь осуществляется за счет ван-дер-ваальсовых сил.

Свободные р-орбитали каждого из атомов направлены перпендикулярно плоскостям ковалентных связей. Их перекрыванием объясняется дополнительная π-связь между атомами углерода.

Таким образом, от валентного состояния, в котором находятся атомы углерода в веществе, зависят свойства этого вещества.

Химические свойства углерода

Наиболее характерные степени окисления: +4, +2.

При низких температурах углерод инертен, но при нагревании его активность возрастает.

Углерод как восстановитель:

—    с кислородом
C0 + O2  –t°=  CO2 углекислый газпри недостатке кислорода — неполное сгорание:

2C0 + O2  –t°= 2C+2O угарный газ

—     со фтором
С + 2F2 = CF4

—    с водяным паром
C0 + H2O  –1200°= С+2O + H2 водяной газ

—  с оксидами металлов. Таким образом выплавляют металл из руды.
C0 + 2CuO  –t°=  2Cu + C+4O2

—  с кислотами – окислителями:
C0 + 2H2SO4(конц.) = С+4O2­ + 2SO2­ + 2H2O
С0 + 4HNO3(конц.) = С+4O2­ + 4NO2­ + 2H2O

—  с серой образует сероуглерод:
С + 2S2 = СS2.

  Углерод как окислитель:

—    с некоторыми металлами образует карбиды

4Al + 3C0 = Al4C3

Ca + 2C0 = CaC2-4

—     с водородом — метан (а также огромное количество органических соединений)

C0 + 2H2 = CH4

— с кремнием, образует карборунд (при 2000 °C в электропечи):

Si + C = SiC.

Нахождение углерода в природе

Ссвободный углерод встречается в виде алмаза и графита.

В виде соединений углерод находится в составе минералов: мела, мрамора, известняка – СаСО3, доломита – MgCO3*CaCO3; гидрокарбонатов – Mg(НCO3)2 и Са(НCO3)2, СО2 входит в состав воздуха; углерод является главной составной частью природных органических соединений – газа, нефти, каменного угля, торфа, входит в состав органических веществ, белков, жиров, углеводов, аминокислот, входящих в состав живых организмов.

Неорганические соединения углерода

Ни ионы С4+ , ни С4- ‑ ни при каких обычных химических процессах не образуются: в соединениях углерода имеются ковалентные связи различной полярности.

Оксид углерода (II)  СО

Угарный газ; бесцветный, без запаха, малорастворим в воде, растворим в органических растворителях, ядовит, t°кип = -192°C; t пл. = -205°C.

Получение1)     В промышленности (в газогенераторах):

C + O2 = CO2

CO2 + C = 2CO

2)     В лаборатории — термическим разложением муравьиной или щавелевой кислоты в присутствии H2SO4(конц.):
HCOOH = H2O + CO­

H2C2O4 = CO­ + CO2­ + H2O

Химические свойства

При обычных условиях CO инертен; при нагревании – восстановитель; несолеобразующий оксид.

1)     с кислородом

2C+2O + O2 = 2C+4O2

2)     с оксидами металлов

C+2O + CuO = Сu + C+4O2

3)     с хлором (на свету)

CO + Cl2  –hn=  COCl2(фосген)

4)     реагирует с расплавами щелочей (под давлением)

CO + NaOH = HCOONa (формиат натрия)

5)     с переходными металлами образует карбонилы

Ni + 4CO  –t°= Ni(CO)4

Fe + 5CO  –t°= Fe(CO)5

Оксид углерода (IV) СO2

Углекислый газ, бесцветный, без запаха, растворимость в воде — в 1V H2O растворяется 0,9V CO2 (при нормальных условиях); тяжелее воздуха; t°пл.= -78,5°C (твёрдый CO2 называется «сухой лёд»); не поддерживает горение.

Получение

  1. Термическим разложением солей угольной кислоты (карбонатов). Обжиг известняка:

CaCO3  –t°=  CaO + CO2

  1. Действием сильных кислот на карбонаты и гидрокарбонаты:

CaCO3 + 2HCl = CaCl2 + H2O + CO2­

NaHCO3 + HCl = NaCl + H2O + CO2­

Химические свойства СO2
Кислотный оксид: реагирует с основными оксидами и основаниями, образуя соли угольной кислоты

Na2O + CO2 = Na2CO3

2NaOH + CO2 = Na2CO3 + H2O

NaOH + CO2 = NaHCO3

При повышенной температуре может проявлять окислительные свойства

С+4O2 + 2Mg  –t°=  2Mg+2O + C0

Качественная реакция

Помутнение известковой воды:

Ca(OH)2 + CO2  = CaCO3¯(белый осадок) + H2O

Оно исчезает при длительном пропускании CO2 через известковую воду, т.к. нерастворимый карбонат кальция переходит в растворимый гидрокарбонат:

CaCO3 + H2O + CO2 = Сa(HCO3)2

Угольная кислота и её соли

H2CO3 — Кислота слабая, существует только в водном растворе:

CO2 + H2O ↔ H2CO3

Двухосновная:
H2CO3 ↔ H+ + HCO3— Кислые соли — бикарбонаты, гидрокарбонаты
HCO3— ↔ H+ + CO32-    Cредние соли — карбонаты

https://www.youtube.com/watch?v=yvfxjaka8to

Характерны все свойства кислот.

Карбонаты и гидрокарбонаты могут превращаться друг в друга:

2NaHCO3  –t°=  Na2CO3 + H2O + CO2­

Na2CO3 + H2O + CO2 = 2NaHCO3

Карбонаты металлов (кроме щелочных металлов) при нагревании декарбоксилируются с образованием оксида:

CuCO3  –t°=  CuO + CO2­

Качественная реакция — «вскипание» при действии сильной кислоты:

Na2CO3 + 2HCl = 2NaCl + H2O + CO2­

CO32- + 2H+ = H2O + CO2­

Карбиды

Карбид кальция:

CaO + 3 C = CaC2 + CO

CaC2 + 2 H2O = Ca(OH)2 + C2H2 .

Ацетилен выделяется при реакции с водой карбидов цинка, кадмия, лантана и церия:

2 LaC2 + 6 H2O = 2La(OH)3 + 2 C2H2 + H2.

Be2C и Al4C3 разлагаются водой с образованием метана:

Al4C3 + 12 H2O = 4 Al(OH)3 = 3 CH4.

В технике применяют карбиды титана TiC, вольфрама W2C (твердые сплавы), кремния SiC (карборунд – в качестве абразива и материала для нагревателей).

Цианиды

получают при нагревании соды в атмосфере аммиака и угарного газа:

Na2CO3 + 2 NH3 + 3 CO = 2 NaCN + 2 H2O + H2 + 2 CO2

Синильная кислота HCN – важный продукт химической промышленности, широко применяется в органическом синтезе. Ее мировое производство достигает 200 тыс. т в год. Электронное строение цианид-аниона аналогично оксиду углерода (II), такие частицы называют изоэлектронными:

C=O: [:C=N:]–

Цианиды (0,1-0,2%-ный водный раствор) применяют при добыче золота:

2 Au + 4 KCN + H2O + 0,5 O2 = 2 K[Au(CN)2] + 2 KOH.

При кипячении растворов цианидов с серой или сплавлении твердых веществ образуются роданиды:
KCN + S = KSCN.

При нагревании цианидов малоактивных металлов получается дициан:  Hg(CN)2 = Hg + (CN)2. Растворы цианидов окисляются до цианатов:

2 KCN + O2 = 2 KOCN.

Циановая кислота существует в двух формах:

H-N=C=O; H-O-C=N:

В 1828 г. Фридрих Вёлер (1800-1882) получил из цианата аммония мочевину: NH4OCN = CO(NH2)2 при упаривании водного раствора.

Это событие обычно рассматривается как победа синтетической химии над «виталистической теорией».

Существует изомер циановой кислоты – гремучая кислота

H-O-N=C.
Ее соли (гремучая ртуть Hg(ONC)2) используются в ударных воспламенителях.

Синтез мочевины (карбамида):

CO2 + 2 NH3 = CO(NH2)2 + H2O.  При 1300С и 100 атм.

Мочевина является амидом угольной кислоты, существует и ее «азотный аналог» – гуанидин.

Карбонаты

Важнейшие неорганические соединения углерода – соли угольной кислоты (карбонаты). H2CO3 – слабая кислота (К1 =1,3·10-4; К2 =5·10-11). Карбонатный буфер поддерживает углекислотное равновесие в атмосфере. Мировой океан обладает огромной буферной емкостью, потому что он является открытой системой. Основная буферная реакция – равновесие при диссоциации угольной кислоты:

H2CO3 ↔ H+ + HCO3— .

При понижении кислотности происходит дополнительное поглощение углекислого газа из атмосферы с образованием кислоты:
CO2 + H2O ↔ H2CO3 .

При повышении кислотности происходит растворение карбонатных пород (раковины, меловые и известняковые отложения в океане); этим компенсируется убыль гидрокарбонатных ионов:

H+ + CO32-↔  HCO3—

CaCO3(тв.) ↔  Ca2+ + CO32-

Твердые карбонаты переходят в растворимые гидрокарбонаты. Именно этот процесс химического растворения избыточного углекислого газа противодействует «парниковому эффекту» – глобальному потеплению из-за поглощения углекислым газом теплового излучения Земли. Примерно треть мирового производства соды (карбонат натрия Na2CO3) используется в производстве стекла.

Источник: http://himege.ru/uglerod-xarakteristika-elementa-i-ximicheskie-svojstva/

Углерод — химические и физические свойства

Строение атома углерода

1001student.ru > Химия > Углерод — химические и физические свойства

Углерод – это, наверное, один из самых впечатляющих элементов химии на нашей планете, который обладает уникальной способностью образовывать огромное множество различных органических и неорганических связей.

Одним словом, углеродные соединения, которые обладают уникальными характеристиками – основа жизни на нашей планете.

  • Что такое углерод
  • Физические свойства
  • Строение атома
  • Химические свойства
  • Получение углерода
  • История открытия
  • Роль углерода в организме человека
  • Нахождение в природе углерода
  • Применение углерода

Что такое углерод

В химической таблице Д.И. Менделеева углерод находится под шестым номером, входит в 14 группу и носит обозначение «С».

Физические свойства

Это водородное соединение, входящее в группу биологических молекул, молярная масса и молекулярная масса которого – 12,011, температура плавления составляет 3550 градусов.

Степень окисления данного элемента может быть: +4, +3, +2, +1, 0, -1, -2, -3, -4, а плотность составляет 2,25 г/см3.

В агрегатном состоянии углерод — твердое вещество, а кристаллическая решетка — атомная.

Углерод имеет следующие аллотропные модификации:

  • алмаз;
  • графит;
  • фуллерен;
  • карбин.

Строение атома

Атом вещества имеет электронную конфигурацию вида — 1S22S22P2. На внешнем уровне у атома 4 электрона, находящиеся на двух разных орбиталях.

Если же брать возбужденное состояние элемента, то его конфигурация становится 1S22S12P3.

К тому же атом вещества может быть первичным, вторичным, третичным и четвертичным.

Химические свойства

Пребывая в нормальных условиях, элемент инертен и во взаимодействие с металлами и неметаллами вступает при повышенных температурах:

  • взаимодействует с металлами, вследствие чего образуются карбиды;
  • вступает в реакцию с фтором (галоген);
  • при повышенных температурах взаимодействует с водородом и серой;
  • при повышении температуры обеспечивает восстановление металлов и неметаллов из оксидов;
  • при 1000 градусах вступает во взаимодействие с водой;
  • при повышении температуры горит.

Получение углерода

Углерод в природе можно найти в виде черного графита либо же, что очень редко, в виде алмаза. Ненатуральный графит получают с помощью реакции кокса с кремнеземом.

А ненатуральные алмазы получают, применяя тепло и давление вместе с катализаторами. Так металл расплавляется, а получившийся алмаз выходит в виде осадка.

Добавление азота приводит к получению желтоватых алмазов, а бора – голубоватых.

История открытия

Углерод использовался людьми с давних времен. Грекам был известен графит и уголь, а алмазы впервые нашлись в Индии. К слову, в качестве графита люди часто принимали схожие по виду соединения. Но даже несмотря на это, графит широко использовался для письма, ведь даже слово «графо» с греческого языка переводится как «пишу».

В настоящее время графит используется так же в письме, в частности его можно встретить в карандашах. В начале 18 века в Бразилии началась торговля алмазами, были открыты многие месторождения, а уже во второй половине 20 века люди научились получать ненатуральные драгоценные камни.

На настоящий момент ненатуральные алмазы используются в промышленности, а настоящие – в ювелирной сфере.

Роль углерода в организме человека

В тело человека углерод попадает вместе с пищей, в течение суток – 300 г. А общее количество вещества в человеческом организме составляет 21% от массы тела.

Из данного элемента состоят на 2/3 мышцы и 1/3 костей. А выводится из тела газ вместе с выдыхаемым воздухом либо же с мочевиной.

Стоит отметить: без этого вещества жизнь на Земле невозможна, ведь углерод составляет связи, помогающие организму бороться с губительным влиянием окружающего мира.

Таким образом, элемент способен составлять продолжительные цепи либо же кольца атомов, которые представляют собой основу для множества других важных связей.

Нахождение в природе углерода

Элемент и его соединения можно встретить повсюду. В первую очередь отметим, что вещество составляет 0,032% от общего количества земной коры.

Одиночный элемент можно встретить в каменном угле. А кристаллический элемент находится в аллотропных модификациях. Также в воздухе постоянно растет количество углекислого газа.

Большую концентрацию элемента в окружающей среде можно встретить в качестве соединений с различными элементами. Например, двуокись углерода содержится в воздухе в количестве 0,03%. В таких минералах как известняк или же мрамор, содержатся карбонаты.

Все живые организмы несут в себе соединения углерода с иными элементами. К тому же остатки живых организмов становятся такими отложениями, как нефть, битум.

Применение углерода

Соединения этого элемента широко используются во всех сферах нашей жизни и перечислять их можно бесконечно долго, поэтому мы укажем несколько из них:

  • графит используется в грифелях карандашей и изготовлении электродов;
  • алмазы нашли свое широкое применение в ювелирной сфере и в буровом деле;
  • углерод используют как восстановитель для выведения таких элементов, как железная руда и кремний;
  • активированный уголь, состоящий в основном из этого элемента, широко используется в медицинской области, промышленности и в быту.

Источник: https://1001student.ru/himiya/uglerod.html

Химия 10 класс: Электронное строение атома углерода

Строение атома углерода

Рис. 1. Урав­не­ние Шре­дин­ге­ра

Осо­бен­но­сти стро­е­ния ор­га­ни­че­ских со­еди­не­ний свя­за­ны с осо­бен­но­стя­ми стро­е­ния атома уг­ле­ро­да. Осо­бен­но­сти стро­е­ния атома уг­ле­ро­да объ­яс­ня­ет наука кван­то­вая ме­ха­ни­ка.

Ос­нов­ные по­ло­же­ния кван­то­вой ме­ха­ни­ки сво­дят­ся к необ­хо­ди­мо­сти ре­шить урав­не­ние Шре­дин­ге­ра, опи­сы­ва­ю­щее по­ве­де­ние элек­тро­нов в атоме. Рис. 1. В ре­зуль­та­те ре­ше­ния по­лу­ча­ет­ся набор, опи­сы­ва­е­мый 4-мя кван­то­вы­ми чис­ла­ми, ко­то­рые поз­во­ля­ют пред­ска­зать очень мно­гое в свой­ствах атома.

Кван­то­во-ме­ха­ни­че­ские рас­че­ты поз­во­ля­ют опре­де­лить наи­бо­ле­ее устой­чи­вые кон­фи­гу­ра­ции ато­мов и мо­ле­кул.

Опи­са­ние элек­трон­но­го со­сто­я­ния атома

Рис. 2. Атом во­до­ро­да

Рас­смот­рим про­стей­ший атом – атом во­до­ро­да. Он со­сто­ит из од­но­го элек­тро­на и од­но­го про­то­на. Рис. 2. Энер­гию элек­тро­на в атоме во­до­ро­да можно пред­ста­вить как боль­шую лест­ни­цу в мно­го­этаж­ном зда­нии. Наи­боль­шая энер­гия при­сут­ству­ет на так на­зы­ва­е­мых лест­нич­ных про­ле­тах.

· В кван­тоой ме­ха­ни­ке – это глав­ное кван­то­вое число.(n). Оно при­ни­ма­ет зна­че­ния 1, 2, 3, 4 и т. д.

· Ор­би­таль­ное кван­то­вое число можно пред­ста­вить как сту­пень­ки между лест­нич­ны­ми про­лё­та­ми. Оно при­ни­ма­ет зна­че­ния от нуля l = 0, 1, 2,.. до n-1.

Бук­вен­ные обо­зна­че­ния ор­би­таль­но­го кван­то­во­го числа : s, p, d, f и т. д.

· По­ве­де­ние элек­тро­на опи­сы­ва­ет тре­тье число: маг­нит­ное кван­то­вое число ml

 ( ml )= -l,…-2, -1, 0, +1, +2,…+l

· Спи­но­вое кван­то­вое числоms.Оно при­ни­ма­ет зна­че­ния ms=+1/2, -1/2, неза­ви­си­мо от глав­но­го и ор­би­таль­но­го кван­то­вых чисел.

Спин элек­тро­на поз­во­ля­ет ему вза­и­мо­дей­ство­вать с дру­гим элек­тро­ном, несмот­ря на элек­три­че­ские силы от­тал­ки­ва­ния, ко­то­рые имеют очень боль­шие ве­ли­чи­ны. Рис. 3.

Рис. 3. Элек­тро­ны с раз­ны­ми ms

2. Принцип Паули

Рис. 4. В. Паули (1900-1958)

Для опи­са­ния по­ве­де­ния элек­тро­на в атоме нужен прин­цип, уста­нав­ли­ва­ю­щий вза­и­мо­связь всех кван­то­вых чисел. Этот прин­цип вывел немец­кий тео­ре­тик В. Паули. Рис. 4.

Он гла­сит: В одной кван­то­вой си­сте­ме не может быть двух кван­то­вых объ­ек­тов с пол­но­стью оди­на­ко­вым на­бо­ром кван­то­вых чисел. Т.е. в одном атоме не может быть двух оди­на­ко­вых элек­тро­нов.

Ис­поль­зуя кван­то­вые числа и прин­цип Паули, по­лу­ча­ем элек­трон­ное стро­е­ние ато­мов.

Рис. 5. Элек­трон­ное стро­е­ние атома уг­ле­ро­да

3. Уникальность атома углерода

Рас­смот­рим стро­е­ние атома уг­ле­ро­да. Уг­ле­род ока­зал­ся уни­каль­ным ато­мом. В чем его уни­каль­ность? В нем при­сут­ству­ет некая сим­мет­рия. На 4-х ор­би­та­лях на­хо­дит­ся 4 элек­тро­на. Он может об­ра­зо­вы­вать целых 4 связи. Это мак­си­маль­ное число свя­зей для эле­мен­тов вто­ро­го пе­ри­о­да. Рис. 5.

Уг­ле­род в своих со­еди­не­ни­ях про­яв­ля­ет ва­лент­ность II и IV. Двух­ва­лент­ный уг­ле­род на­хо­дит­ся в своей ос­нов­ной элек­трон­ной кон­фи­гу­ра­ции, а IV-ва­лент­ный на­хо­дит­ся  в воз­буж­ден­ной кон­фи­гу­ра­ции.

При пе­ре­хо­де в воз­буж­ден­ное со­сто­я­ние, элек­трон с 2s ор­би­та­ли за­ни­ма­ет ва­кант­ное место на 2р ор­би­та­ли. Рис. 6. При об­ра­зо­ва­нии хи­ми­че­ской связи про­ис­хо­дит ги­бри­ди­за­ция элек­трон­ных об­ла­ков.

Уг­ле­род может про­яв­лять сте­пе­ни окис­ле­ния от -4 до +4. К неор­га­ни­че­ским со­еди­не­ни­ям уг­ле­ро­да от­но­сят­ся его ок­си­ды, уголь­ная кис­ло­та, её соли – кар­бо­на­ты и гид­ро­кар­бо­на­ты и кар­би­ды.

В неор­га­ни­че­ских со­еди­не­ни­ях уг­ле­род про­яв­ля­ет сте­пень окис­ле­ния +4, +2, и несколь­ко от­ри­ца­тель­ных сте­пе­ней окис­ле­ния в кар­би­дах.

Рис. 6. Два со­сто­я­ния атома уг­ле­ро­да

Одной из осо­бен­но­стей ато­мов уг­ле­ро­да есть его осо­бен­ность об­ра­зо­вы­вать це­поч­ки неогра­ни­чен­ной длины. Из-за этого и су­ще­ству­ет огром­ное число ор­га­ни­че­ских со­еди­не­ний.

4. Четыре первопринципа

Опи­са­ние мира на ос­но­ве че­ты­рех ба­зо­вых пер­во­прин­ци­пов не было от­кры­ти­ем тех уче­ных, ко­то­рые со­зда­ва­ли кван­то­вую ме­ха­ни­ку.

С V века до нашей эры из­вест­но, что кар­ти­на мира, как в ев­ро­пей­ской части зем­но­го шара, так и в Древ­нем Китае опи­сы­ва­лась на базе 4-х пер­во­прин­ци­пов.

Это прин­ци­пы огня, воз­ду­ха, земли и воды. В XX веке их за­ме­ни­ли 4 кван­то­вых числа.

Под­ве­де­ние итога

Вы изу­чи­ли тему «Элек­трон­ное стро­е­ние атома уг­ле­ро­да». Было сфор­ми­ро­ва­но по­ня­тие об элек­трон­ных ор­би­та­лях и воз­мож­ных ва­лент­ных со­сто­я­ни­ях атома уг­ле­ро­да, рас­смат­ри­вал­ся прин­цип Пауля. Про­во­ди­лось со­став­ле­ние элек­трон­но-гра­фи­че­ских фор­мул ато­мов хи­ми­че­ских эле­мен­тов.

Источник: https://100ballov.kz/mod/page/view.php?id=3029

Х и м и я

Строение атома углерода

Углерод является шестым элементом периодической системы Менделеева. Его атомный вес равен 12.

Углерод находится во втором периоде системы Менделеева и в четвёртой группе этой системы.

Номер периода сообщает нам, что шесть электронов углерода располагаются на двух энергетических уровнях.

А четвёртый номер группы говорит, что на внешнем энергетическом уровне у углерода находится четыре электрона. Два из них это спаренные s-электроны, а два другие – не спаренные р-электроны.

Структура внешнего электронного слоя атома углерода может быть выражена следующими схемами:

Каждая ячейка вэтих схемах означает отдельную электронную орбиталь, стрелка – элетрон, находящийся на орбитали. Две стрелки внутри одной ячейки – это два электрона, находящиеся на одной орбитали, но имеющие противоположно направленные спины.

При возбуждении атома (при сообщени ему энергии) один из спаренных S-электронов занимает р-орбиталь.

Возбуждённый атом углерода может учавствовать в образовании четырёх ковалентных связей. Поэтому в подавляющем большинстве своих соединений углерод проявляет валентность, равную четырем.

Так, простейшее органическое соединение углеводород метан имеет состав СН4. Строение его может быть выражено структурной или электронной формулами:

Электронная формула показывает, что атом углерода в молекуле метана имеет устойчивую восьмиэлектронную внешнюю оболочку, а атомы водорода – устойчивую двухэлектронную оболочку.

Все четыре ковалентных связи углерода в метане (и в других подобных соединениях) равноценны и симметрично направлены в пространстве. Атом углерода находится как бы в центре тетраэдра (правильной четырёхугольной пирамиды), а четыре соединённых с ним атома (в случае метана – четыре атома водорода) в вершинах тетраэдра.

Углы между направлениями любой пары связей одинаковы и составляют 109 градусов 28 минут.

Это объясняется тем, что в атоме углерода, когда он образует ковалентные связи с четырьмя другими атомами, из одной s– и трёх p-орбиталей в результате sp3-гибридизации образуются чтыре симметрично расположенные в пространстве гибридные sp3-орбитали, вытянутые в направлении к вершинам тетраэдра.

Количество электронов на внешнем энергетическом уровне является главным фактором, определяющим химические свойства элемента.

В левой части  периодической системы   расположены элементы с малозаполненным внешним электронным уровнем. У элементов первой группы на внешнем уровне один электрон, у элементов второй группы – два.

Элементы этих двух групп являются металлами. Они легко окисляются, т.е. теряют свои внешние электроны ипревращаются в положительные ионы.

В правой части периодической системы, наоборот, находятся неметаллы (окислители). В сравнении с металлами они обладают ядром с большим числом протонов. Такое массивное ядро обеспечивает гораздо более сильное притяжение своего электронного облака.

Такие элементы с большим трудом теряют свои электроны, зато непрочь присоединить к себе дополнительные электроны других атомов, т.е. окислить их, а самим, при этом, превратиться в отрицательный ион.

Металлические свойства элементов по мере возрастания номера группы в периодической системе ослабляются, а их способность окислять другие элементы увеличивается.

Углерод находится в четвёртой группе, т.е. как раз посередине между металлами, легко отдающими электроны, и неметаллами, легко эти электроны присоединяющими.

По этой причине углерод не обладает ярко выраженной склонности отдавать или присоединять электроны.

Углеродные цепи.

Исключительным свойством углерода, обуславливающим многообразие органических соединений, является способность его атомов соединяться прочными ковалентными связями друг с другом, образуя углеродные схемы практически неограниченной длины.

Кроме углерода, цепи из одинаковых атомов образует его аналог из IV группы – кремний. Однако такие цепи содержат не более шести атомов Si. Известны длинные цепи из атомов серы, но содержащие их соединения непрочны.

Валентности атомов углерода, не задействованные для взаимного соединения, используются на присоединение других атомов или групп (в углеводородах – для присоединения водорода).

Так углеводороды этан (С2Н6) и пропан (С3Н8) содержат цепи соответственно из двух и трёх атомов углерода. Строение их выражают следующие структурные и электронные формулы:

Известны соединения, содержащие в цепях сотни и более атомов углерода.

Вследствии тетраэдрической направленности связей углерода, его атомы, входящие в цепь, располагаются не на прямой, а зигзагообразно. Причём, благодаря возможности вращения атомов вокруг оси связи, цепь в пространстве может принимать различные формы (конформации):

Такая структура цепей даёт возможность сближаться концевым или другим не смежным атомам углерода. В результате возникновения связи между этими атомами углеродные цепи могут замыкаться в кольца (циклы), например:

Таким образом, многообразие органических соединений определяется и тем, что при одинаковом числе атомов углерода в молекуле возможны соединения с открытой незамкнутой цепью углеродных атомов, а также вещества, молекулы которых содержат циклы.

Простые и кратные связи.

Ковалентные связи между атомами углерода, образованные одной парой обобщённых электронов, называются простыми связями.

Связь между атомами углерода может осуществляться не одной, а двумя или тремя общими парами электронов. Тогда получаются цепи с кратными – двойными или тройными связями. Эти связи можно изобразить следующим образом:

Простейшие соединения, содержащие кратные связи – углеводороды этилен (с двойной связью) и ацетилен (с тройной связью):

Углеводороды с кратными связями называются непредельными или ненасыщенными. Этилен и ацетилен – первые представители двух гомологических рядов – этиленовых и ацетиленовых углеводородов.

Источник: http://xn----7sbb4aandjwsmn3a8g6b.xn--p1ai/views/alchemy/theory/chemistry/organic-chemistry/Carbon-structure_and_properties.php

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.

    ×
    Рекомендуем посмотреть