Закон Гука

Закон Гука

Закон Гука

Если на тело воздействовать некоторой силой, то его размер и (или) форма изменяются. Это процесс называют деформацией тела. В телах, подвергающихся деформациям, возникают силы упругости, уравновешивающие внешние силы.

Виды деформации

Все деформации можно разделить на два вида: упругие деформации и пластические.

Определение

Упругой называют деформацию, если после снятия нагрузки прежние размеры тела и его форма полностью восстанавливаются.

Определение

Пластической считают деформацию, при которой появившиеся, вследствие деформации, изменения размера и формы тела, после снятия нагрузки восстанавливаются частично.

Характер деформации зависит от

  • величины и времени воздействия внешней нагрузки;
  • материала тела;
  • состояния тела (температуры, способов обработки и т.д).

Резкой границы между упругой и пластической деформациями не существует. В большом числе случаев малые и кратковременные деформации можно считать упругими.

Формулировки закона Гука

Эмпирически получено, что чем большую деформацию необходимо получить, тем большую деформирующую силу следует приложить к телу. По величине деформации ($\Delta l$) можно судить о величине силы:

\[\Delta l=\frac{F}{k}\left(1\right),\]

выражение (1) означает, что абсолютная величина упругой деформации прямо пропорциональная приложенной силе. Данное утверждение является содержанием закона Гука.

При деформации удлинения (сжатия) тела выполняется равенство:

\[F=k\left(l-l_0\right)=k\Delta l\ \left(2\right),\]

где $F$ – деформирующая сила; $l_0$ – начальная длина тела; $l$ – длина тела после деформации; $k$ – коэффициент упругости (коэффициент жесткости, жесткость), $ \left[k\right]=\frac{Н}{м}$. Коэффициент упругости зависит от материала тела, его размеров и формы.

Так как в деформированном теле возникают силы упругости ($F_u$), которые стремятся восстановить прежние размеры и форму телу, то часто закон Гука формулируют относительно сил упругости:
\[F_u=k\left|\Delta l\right|\ \left(3\right).\]

Закон Гука хорошо работает для деформаций, которые возникают в стержнях из стали, чугуна, и других твердых веществ, в пружинах. Справедлив закон Гука для деформаций растяжения и сжатия.

Закон Гука для малых деформаций

Сила упругости зависит от изменения расстояния между частями одного и того же тела. Следует помнить, что закон Гука выполняется только для малых деформаций. При больших деформациях сила упругости не пропорциональна измерению длины, при дальнейшем увеличении деформирующего воздействия тело способно разрушаться.

Если деформации тела малы, то силы упругости можно определять по ускорению, которое данные силы сообщают телам. Если тело неподвижно, то модуль силы упругости находят из равенства нулю векторной суммы сил, которые действуют на тело.

Закон Гука можно записывать не только относительно сил, но часто его формулируют для такой величины как напряжение ($\sigma =\frac{F}{S}$ – сила, которая действует на единичную площадь поперечного сечения тела), тогда для малых деформаций:

\[\sigma =Е\frac{\Delta l}{l}\ \left(4\right),\]

где $Е$ – модуль Юнга;$\ \frac{\Delta l}{l}$ – относительное удлинение тела.

Примеры задач с решением

Пример 1

Задание. К стальному тросу длинной $l$, диаметром $d$ подвесили груз массой $m$. Каково напряжение в тросе ($\sigma $), а также абсолютное его удлинение ($\Delta l$)?

Решение. Сделаем рисунок.

Для того чтобы найти силу упругости, рассмотрим силы, которые действуют на тело, подвешенное к тросу, так как сила упругости будет равна по величине силе натяжения ($\overline{N}$). По второму закону Ньютона имеем:

\[m\overline{g}+\overline{N}=0\ \left(1.1\right).\]

В проекции на ось Y уравнения (1.1) получим:

\[N=mg\ \left(1.2\right).\]

По третьему закону Ньютона тело, действует на трос с силой равной по величине силе $\overline{N}$, трос, действует на тело с силой $\overline{F}$, равной$\overline{\ N,}$ но противоположного направления, так деформирующая трос сила ($\overline{F}$) равна:

\[\overline{F}=-\overline{N\ }\left(1.3\right).\]

Под воздействием деформирующей силы в тросе возникает сила упругости, которая равна по величине:

\[F_u=N=mg\left(1.4\right).\]

Напряжение в тросе ($\sigma $) найдем как:

\[\sigma =\frac{F_u}{S}=\frac{mg}{S}\left(1.5\right).\]

Площадь S – это площадь поперечного сечения троса:

\[S=\pi \frac{d2}{4}\left(1.6\right).\]

Получим:

\[\sigma =\frac{4mg\ }{{\pi d}2}\left(1.7\right).\]

По закону Гука:

\[\sigma =Е\frac{\Delta l}{l}\left(1.8\right),\]

значит:

\[\frac{\Delta l}{l}=\frac{\sigma }{E}\to \Delta l=\frac{\sigma l}{E}\to \Delta l=\frac{4mgl\ }{{\pi d}2E}.\]

Ответ. $\sigma =\frac{4mg\ }{{\pi d}2};\ \Delta l=\frac{4mgl\ }{{\pi d}2E}$

Пример 2

Задание. Какова абсолютная деформация первой пружины из двух последовательно соединенных пружин (рис.2), если коэффициентыжесткости пружин равны: $k_1\ и\ k_2$, а удлинение второй пружины составляет $\Delta x_2$?

Решение. Если система из последовательно соединенных пружин находится в состоянии равновесия, то силы натяжения данных пружин одинаковы:

\[F_1=F_2=F\ \left(2.1\right).\]

По закону Гука:

\[F_1=k_1\Delta x_1;;\ F_2=k_2\Delta x_2\left(2.2\right).\]

Согласно (2.1) и (2.2) имеем:

\[k_1\Delta x_1=k_2\Delta x_2\ \left(2.3\right).\]

Выразим из (2.3) удлинение первой пружины:

\[\Delta x_1=\frac{k_2\Delta x_2}{k_1}.\]

Ответ. $\Delta x_1=\frac{k_2\Delta x_2}{k_1}$.

Читать дальше: закон Паскаля.

Источник: http://www.webmath.ru/poleznoe/fizika/fizika_3_zakon_guka.php

Закон Гука – формула: при каких условиях выполняется, сила упругости, определение и формулировка при растяжке и сжатии

Закон Гука

Как известно, физика изучает все законы природы: начиная от простейших и заканчивая наиболее общими принципами естествознания. Даже в тех областях, где, казалось бы, физика не способна разобраться, все равно она играет первоочередную роль, и каждый малейший закон, каждый принцип — ничто не ускользает от нее.

Именно физика является основой основ, именно эта наука лежит в истоках всех наук.

Физика изучает взаимодействие всех тел, как парадоксально маленьких, так и невероятно больших. Современная физика активно изучает не просто маленькие, а гипотетические тела, и даже это проливает свет на суть мироздания.

Физика поделена на разделы, это упрощает не только саму науку и понимание ее, но и методологию изучения. Механика занимается движением тел и взаимодействием движущихся тел, термодинамика — тепловыми процессами, электродинамика — электрическими.

Почему деформацию должна изучать механика

Говоря о сжатиях или растяжениях, следует задать себе вопрос: какой раздел физики должен изучать этот процесс? При сильных искажениях может выделяться тепло, быть может, этими процессами должна заниматься термодинамика? Иногда при сжатии жидкостей, она начинает кипеть, а при сжатии газов — образуются жидкости? Так что же, деформацию должна познавать гидродинамика? Или молекулярно-кинетическая теория?

Всё зависит от силы деформации, от ее степени. Если деформируемая среда (материал, который сжимают или растягивают) позволяет, а сжатие невелико, есть смысл рассматривать этот процесс как движение одних точек тела относительно других.

А раз вопрос касается сугубо движения, значит, заниматься этим будет механика.

Закон Гука и условие его выполнения

В 1660 году известный английский ученый Роберт Гук открыл явление, при помощи которого можно механически описать процесс деформаций.

Для того чтобы понимать при каких условиях выполняется закон Гука, ограничимся двумя параметрами:

Есть такие среды (например, газы, жидкости, особо вязкие жидкости, близкие к твердым состояниям или, наоборот, очень текучие жидкости) для которых описать процесс механически никак не получится. И наоборот, существуют такие среды, в которых при достаточно больших силах механика перестает «срабатывать».

Важно! На вопрос: «При каких условиях выполняется закон Гука?», можно дать определенный ответ: «При малых деформациях».

Закон Гука, определение: деформация, которая возникает в теле, прямо пропорциональна силе, которая вызывает эту деформацию.

Естественно, это определение подразумевает, что:

  • сжатия или растяжения невелики;
  • предмет упругий;
  • он состоит из материала, при котором в результате сжатия или растяжения нет нелинейных процессов.

Закон Гука в математической форме

Формулировка Гука, которую мы привели выше, дает возможность записать его в следующем виде:

,

где  — изменение длины тела вследствие сжатия или растяжения, F — сила, приложенная к телу и вызывающая деформацию (сила упругости), k — коэффициент упругости, измеряется в Н/м.

Следует помнить, что закон Гука справедлив только для малых растяжений.

Также отметим, что он при растяжении и сжатии имеет один и тот же вид. Учитывая, что сила — величина векторная и имеет направление, то в случае сжатия, более точной будет такая формула:

,  но опять-таки, все зависит от того куда будет направлена ось, относительно которой вы проводите измерение .

В чем кардинальная разница между сжатием и растяжением? Ни в чем, если оно незначительно.

Степень применимости можно рассмотреть в таком виде:

Обратим внимание на график.

Как видим, при небольших растяжениях (первая четверть координат) долгое время сила с координатой имеет линейную связь (красная прямая), но затем реальная зависимость (пунктир) становится нелинейной, и закон перестает выполняться.

На практике это отражается таким сильным растяжением, что пружина перестает возвращаться в исходное положение, теряет свойства. При еще большем растяжении происходит излом, и разрушается структура материала.

При небольших сжатиях (третья четверть координат) долгое время сила с координатой имеет тоже линейную связь (красная прямая), но затем реальная зависимость (пунктир) становится нелинейной, и всё вновь перестает выполняться.

На практике это отражается таким сильным сжатием, что начинает выделяться тепло и пружина теряет свойства.

При еще большем сжатии происходит «слипание» витков пружины и она начинает деформироваться по вертикали, а затем и вовсе плавиться.

Как видим формула, выражающая закон, позволяет находить силу, зная изменение длины тела, либо, зная силу упругости, измерить изменение длины:

.

Также, в отдельных случаях можно находить коэффициент упругости. Для того, чтобы понять как это делается, рассмотрим пример задачи:

К пружине подсоединен динамометр. Ее растянули, приложив силу в 20 Ньютон, из-за чего она стала иметь длину 1 метр. Затем ее отпустили, подождали пока прекратятся колебания, и она вернулась к своему нормальному состоянию. В нормальном состоянии ее длина составляла 87, 5 сантиметров. Давайте попробуем узнать, из какого материала сделана пружина.

Дано:

Решение:

Найдем численное значение деформации пружины:

Запишем:

.

Отсюда можем выразить значение коэффициента:

Посмотрев таблицу, можем обнаружить, что этот показатель соответствует пружинной стали.

! Что такое закон всемирного тяготения: формула великого открытия

Неприятности с коэффициентом упругости

Физика, как известно, наука очень точная, более того, она настолько точна, что создала целые прикладные науки, измеряющие погрешности. Будучи эталоном непоколебимой точности, она не может себе позволить быть нескладной.

Практика показывает, что рассмотренная нами линейная зависимость, является ничем иным как законом Гука для тонкого и растяжимого стержня. Лишь в качестве исключения можно применять его для пружин, но даже это является нежелательным.

Оказывается, что коэффициент k — переменная величина, которая зависит не только от того из какого материала тело, но и от диаметра и его линейных размеров.

По этой причине, наши умозаключения требуют уточнений и развития, ведь иначе, формулу:

нельзя назвать ничем иным как зависимостью между тремя переменными.

! Специальная теория относительности Эйнштейна: кратко и простыми словами

Модуль Юнга

Давайте попробуем разобраться с коэффициентом упругости. Этот параметр, как мы выяснили, зависит от трех величин:

  • материала (что нас вполне устраивает);
  • длины L (что указывает на его зависимость от );
  • площади S.

Важно! Таким образом, если нам удастся каким-то образом «отделить» из коэффициента длину L и площадь S, то мы получим коэффициент, полностью зависящий от материала.

Что нам известно:

  • чем больше площадь сечения тела, тем больше коэффициент k, причем зависимость линейная;
  • чем больше длина тела, тем меньше коэффициент k, причем зависимость обратно пропорциональная.

Значит, мы можем, коэффициент упругости записать таким образом:

,

причем Е — новый коэффициент, который теперь точно зависит исключительно от типа материала.

Введем понятие “относительное удлинение”:

.

Следует признать, что эта величина более содержательна, чем  , поскольку она отражает не просто на сколько пружина сжалась или растянулась, а во сколько раз это произошло.

Поскольку мы уже «ввели в игру» S, то введем понятие нормального напряжения, которое записывается таким образом:

.

Важно! Нормальное напряжение представляет собой долю деформирующей силы на каждый элемент площади сечения.

Измеряется нормальное сечение в Н/м2.

Тогда, закон можно записать в следующем виде:

,

подставим выражение для k:

,

перенесем S в левую часть, в знаменатель:

,

заменим величины:

.

Таким образом, мы получили формулу, которая отражает связь между нормальным напряжением и относительным удлинением.

урок по физике «Силы упругости. Закон Гука»

Закон Гука и упругие деформации



Вывод

Сформулируем закон Гука при растяжении и сжатии: при малых сжатиях нормальное напряжение прямо пропорционально относительному удлинению.

Коэффициент Е называется модулем Юнга и зависит исключительно от материала.

Источник: https://uchim.guru/fizika/zakon-guka-formula.html

Закон Гука — определение и формула

Закон Гука

Всё, что происходит в природе, основывается на действии различных сил – закон Гука является тому подтверждением. Это одно из основополагающих явлений науки.

Этот процесс является определяющим звеном процессов сжатия, изгибов, растяжения и других видоизменений материалов различных структур.

Разберёмся, в чем же заключается этот закон, как можно применить правило Гука на практике, и всегда ли оно выполняется.

  • Определение и формула закона Гука
  • Сила упругости
  • При каких условиях выполняется закон Гука
  • Как применить закон упругой деформации на практике
  • Заключение

Определение и формула закона Гука

Давно люди пытались объяснить происхождение явлений сжатия и растяжения. Отсутствие знаний являлось причиной накопления экспериментальных данных. Собственно, свою теорему английский испытатель Гук открыл из своих наблюдений и опытов. Только позже, после  смерти ученого, современники назовут выведенную им аксиому – законом Гука.

Исследователь заметил, что при каждом упругом воздействии на объект появляется сила, которая возвращает его в исходную форму. Это и послужило началом экспериментов.

Аксиома Гука гласит:

При очень маленьких упругих воздействиях создается сила, пропорциональная изменению объекта, но противоположного знака по абсолютной величине перемещения его частиц.

Математически это определение можно записать следующим образом:

Fx = Fупр = —k * x,

где в левой части указывается:

сила, действующая на тело;

x – перемещение тела (м);

k – коэффициент деформации, зависящий от свойств объекта.

Единица измерения, как и любой другой силы, является Ньютон.

Кстати, k еще называют жёсткостью тела, она измеряется в H/м. Жесткость обусловлена не внешними параметрами объекта, а зависит от его материала.

Правда, стоит учесть, что его закон справедлив только для упругих деформаций.

Сила упругости

Формулировка основывается на определении силы упругости. В чем же заключается ее отличие от других воздействий на тело?

На самом деле, сила упругости может возникать в любой точке тела при его упругой деформации. Что понимается под таким воздействием? Это изменение формы тела, при котором объект через определенный период времени возвращается в исходный вид.

А это в свою очередь происходит из-за молекулярного воздействия частиц: при любой деформации происходит изменение расстояния между молекулами объекта, а кулоновские силы притяжения или отталкивания стремятся вернуть тело в исходное положение.

Самая простая модель, демонстрирующая действие сил упругости, является пружинным маятником.

Какая формула выражает аксиому, установленную ученым в этом случае?

Тут аксиома Гука запишется в виде:

ε = α * S,

где ε – относительное удлинение тела (его величина равна отношению удлинения к перемещению);

α – коэффициент пропорциональности (обратно пропорционален модулю Юнга Е);

S – механическое напряжение объекта (его величина равна отношению силы упругости к площади сечения тела).

Учитывая вышесказанное, уравнение можно записать так:

Δx / x = Fупр / E * S,

где Δx – максимальный сдвиг при деформации.

Стоит преобразовать данное выражение, тогда получим следующее:

Fупр = (E * S / x) Δx= k * Δx.

Поскольку сила упругости противоположна внешнему воздействию, то кратко закон читается таким образом:

Fупр = — k * Δx.

В нем не зря упомянуты малые по величине деформации: при них Δx  ̴ x, следовательно, Fупр = — k * x.

При каких условиях выполняется закон Гука

А теперь посмотрим, каковы границы применимости этого выражения, и в каких условиях оно вообще выполняется.

Следует знать, что основным условием является:

s = E * e,

где слева в уравнении находится напряжение, возникающее при деформации, а в правой части модуль Юнга и удлинение.

Причем, E зависит от характеристик частиц объекта, но не от его параметров формы, а второй множитель берется по модулю.

В целом аксиома Гука справедлива для многих ситуаций.

Так, при упругом изгибе пружины, лежащей на двух опорах, математическая запись теоремы выглядит следующим образом:

Fупр = —m * g

Fупр = —k * x

В иных ситуациях (при кручении, различных маятниках и других деформирующих процессах) аналогично записывается воздействие сил на объект.

Как применить закон упругой деформации на практике

Этот закон (обобщенный для многих ситуаций) является базовым в динамике и статике тел, поэтому его применимость осуществляется в областях, где необходимо проводить расчет жесткости и напряжения деформации объектов.

В первую очередь, правило Гука необходимо применять в строительстве и технике. Так, рабочие должны точно знать, какой максимальный груз может поднять башенный кран или какую нагрузку выдержит фундамент будущего здания.

Ни один из поездов не обходится без деформации растяжения и сжатия, поэтому закон Гука справедлив и для этих ситуаций. Кроме того, механизм и принцип действия любых динамометров, которыми снабжены некоторые части технического оборудования, также основываются на этом замечательном законе.

Закон Гука выполняется во всех объектах, являющихся аналогами модели «пружинный маятник».

В обычной жизни, дома, можно видеть применимость этого закона в пружинах некоторых механизмов.

Таким образом, закон Гука применим во многих сферах жизни человека. Он является одним из базовых явлений, на которых держится существование всей жизни на планете.

Заключение

Подводя итоги, следует отметить, что закон Гука – универсальный помощник в задачах с решениями по деформации объектов не только в студенческих книжках по сопромату, но и в различных инженерных областях.

Именно эти простые задания помогают ученым и мастерам создавать новые технические модели, необходимые в условиях современного технического прогресса.

Источник: https://1001student.ru/fizika/zakon-guka.html

Техническая механика

Закон Гука


Более 350 лет назад 25-летний английский физик Роберт Гук (в англоязычной транскрипции – Хук) сформулировал зависимость между относительным линейным удлинением тела и величиной растягивающей тело силы. В оригинале формулировка закона, предложенная Гуком, звучит примерно так:

«Какова сила, таково и удлинение».

В современной трактовке эта зависимость в общем виде формулируется следующим образом:

“Сила упругости, возникающая в теле при его деформации, прямо пропорциональна величине этой деформации”.

Казалось бы, очевидный вывод, который напрашивается естественным образом – чем больше сила, приложенная к брусу, тем в большей степени он деформируется. Тем не менее, заслуга Гука заключается в том, что именно он обратил внимание, на линейную (прямо пропорциональную) зависимость между нагрузкой и относительной деформацией.

Открытия многих, казалось бы – очевидных, закономерностей совершают гении.

Ведь в течении предшествующих Ньютону человеческих поколений считалось, что чем легче тело, тем дольше оно падает на земную поверхность с высоты. И лишь гений смог опровергнуть это заблуждение миллионов людей.

По сути, только великий Эйнштейн сделал неочевидное открытие, которому, впрочем, предшествовали научные исследования и гипотезы многих талантов.

Долгое время закон Гука являлся единственным инструментом новоявленной науки сопротивление материалов, и лежал в основе всех расчетов конструкций на прочность и жесткость. Лишь спустя много лет учеными были установлены более сложные (непропорциональные) зависимости между напряжениями и приложенными к элементам конструкции силовыми факторами, которые, впрочем, тоже основываются на законе Гука.

Большую роль в развитии науки сопротивление материалов сыграли такие видные ученые, как Герц, Журавский, Эйлер, Ясинский и другие, установившие зависимости между напряжениями и сложными видами нагружений. Большинство этих зависимостей и выводов основываются на экспериментально-опытных исследованиях, т. е. получены не только с помощью математического анализа (эмпирические зависимости).

Роберт Гук (1635—1703) считается одним из талантливейших ученых своего времени. Обладавший кипучей творческой энергией, он совершил много интересных открытий в самых разных науках – фундаментальной физике, термодинамике, акустике, оптике, биологии.

Достаточно сказать, что Гуку многие ученые отдают пальму первенства в открытии закона всемирного тяготения, считая, что он раньше Ньютона пришел к его осознанию.

Роберт Гук отличался способностью браться за изучение многих явлений в природе, и, зачастую, не закончив исследование одного явления, на полпути к открытию брался за совершенно другой научный труд, а результатами его незавершенных выводов пользовались последователи, увековечивая свое имя в науке.

Тем не менее, этот человек останется в памяти потомков, как автор знаменитого закона Гука.

Математически закон Гука для деформаций растяжения и сжатия можно записать так:

σ = Еε,

где:
σ – напряжение в сечении бруса,
ε – относительное удлинение бруса, которое определяется по формуле ε = Δl/l (здесь Δl – абсолютное удлинение бруса, l – начальная длина бруса),
Е – коэффициент пропорциональности, который называют модулем продольной упругости (или модулем упругости первого рода, или модулем Юнга).

Коэффициент Е является справочной (определяемой экспериментально) величиной, характеризующей способность материала противостоять деформации и измеряется в Паскалях (1 Па = Н/м2).

Поскольку 1 Паскаль – очень маленькая величина (муха весом 14 мг, севшая на столик площадью 1 м2 окажет на него давление, примерно равное 0,00014 Па), поэтому чаще применяют ее производную – 1 МПа (миллион Паскалей, или 1 МПа = 1 000 000 Па).



Математическое выражение закона Гука можно представить в расширенном виде, подставив вместо σ (напряжения) его зависимость от силы и площади сечения: σ = F/A, и вместо ε (удельное удлинение) выражение Δl/l. Тогда получим:
F/A = Е(Δl/l), откуда можно выразить абсолютное удлинение (укорочение) бруса в результате приложения внешней силы F:

Δl = Fl/(EA).

Это выражение можно сформулировать следующим образом: абсолютное удлинение (укорочение) бруса прямо пропорционально приложенной внешней нагрузке и длине бруса и обратно пропорционально площади поперечного сечения бруса.
Выражение ЕА, стоящее в знаменателе дроби, часто называют жесткостью сечения при растяжении и сжатии.

Приведенные формулы закона Гука применимы только для брусьев или их участков постоянного поперечного сечения, изготовленных из однородного материала и при постоянной продольной силе.

Если брус имеет ступенчатую форму, или состоит из участков, изготовленных из разных материалов, и нагружен на разных участках несколькими продольными силами, то абсолютное изменение длины всего бруса определяют, как сумму абсолютных удлинений его отдельных участков:

Δl = Σ (Δli)

В заключение следует отметить, что закон Гука справедлив в ограниченном диапазоне внешних нагрузок и не применим, когда некоторые напряжения (или деформации) достигают предельных значений, характерных для каждого материала. При превышении предельных значений напряжений линейная зависимость между нагрузками и деформациями не наблюдается.

***

Материалы раздела “Сопротивление материалов”:

Метод сечений. Напряжения



Олимпиады и тесты

Правильные ответы на вопросы Теста № 3

№ вопроса

1

2

3

4

5

6

7

8

9

10

Правильный вариант ответа

1

2

1

2

3

2

1

3

1

3

Источник: http://k-a-t.ru/tex_mex/1-sopromat_huk/index.shtml

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.